Mou, Lichao und Zhu, Xiao Xiang (2016) Spatiotemporal Scene Interpretation of Space Videos via Deep Neural Network and Tracklet Analysis. IGARSS 2016, 2016-07-10 - 2016-07-15, Beijing, China. doi: 10.1109/igarss.2016.7729468.
PDF
- Nur DLR-intern zugänglich
4MB |
Kurzfassung
Spaceborne remote sensing videos are becoming indispensable resources, opening up opportunities for new remote sensing applications. To exploit this new type of data, we need sophisticated algorithms for semantic Scene interpretation. The main difficulties are: 1) Due to the relatively poor spatial resolution of the video acquired from space, moving objects, like cars, are very difficult to detect, not to mention track; 2) camera movement handicaps scene interpretation. To address these challenges, in this paper we propose a novel framework that fuses multispectral images and space videos for spatiotemporal analysis. Taking a multispectral image and a spaceborne video as input, an innovative deep neural network is proposed to fuse them in order to achieve a fine-resolution spatial scene labeling map. Moreover, a sophisticated approach is proposed to analyze activities and estimate traffic density from 150, 000+ tracklets produced by a Kanade-Lucas-Tomasi keypoint tracker. The proposed framework is validated using data provided for the 2016 IEEE GRSS data fusion contest, including a video acquired from the International Space Station and a DEIMOS-2 multispectral image. Both visual and quantitative analysis of the experimental results demonstrates the effectiveness of our approach.
elib-URL des Eintrags: | https://elib.dlr.de/111271/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Spatiotemporal Scene Interpretation of Space Videos via Deep Neural Network and Tracklet Analysis | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 2016 | ||||||||||||
Referierte Publikation: | Nein | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Nein | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.1109/igarss.2016.7729468 | ||||||||||||
Seitenbereich: | Seiten 1823-1826 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | space videos, scene labeling, deep learning, activity analysis, traffic density estimation | ||||||||||||
Veranstaltungstitel: | IGARSS 2016 | ||||||||||||
Veranstaltungsort: | Beijing, China | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 10 Juli 2016 | ||||||||||||
Veranstaltungsende: | 15 Juli 2016 | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||
Hinterlegt von: | Mou, LiChao | ||||||||||||
Hinterlegt am: | 24 Feb 2017 10:52 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:16 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags