elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Spatiotemporal Scene Interpretation of Space Videos via Deep Neural Network and Tracklet Analysis

Mou, Lichao und Zhu, Xiao Xiang (2016) Spatiotemporal Scene Interpretation of Space Videos via Deep Neural Network and Tracklet Analysis. IGARSS 2016, 2016-07-10 - 2016-07-15, Beijing, China. doi: 10.1109/igarss.2016.7729468.

[img] PDF - Nur DLR-intern zugänglich
4MB

Kurzfassung

Spaceborne remote sensing videos are becoming indispensable resources, opening up opportunities for new remote sensing applications. To exploit this new type of data, we need sophisticated algorithms for semantic Scene interpretation. The main difficulties are: 1) Due to the relatively poor spatial resolution of the video acquired from space, moving objects, like cars, are very difficult to detect, not to mention track; 2) camera movement handicaps scene interpretation. To address these challenges, in this paper we propose a novel framework that fuses multispectral images and space videos for spatiotemporal analysis. Taking a multispectral image and a spaceborne video as input, an innovative deep neural network is proposed to fuse them in order to achieve a fine-resolution spatial scene labeling map. Moreover, a sophisticated approach is proposed to analyze activities and estimate traffic density from 150, 000+ tracklets produced by a Kanade-Lucas-Tomasi keypoint tracker. The proposed framework is validated using data provided for the 2016 IEEE GRSS data fusion contest, including a video acquired from the International Space Station and a DEIMOS-2 multispectral image. Both visual and quantitative analysis of the experimental results demonstrates the effectiveness of our approach.

elib-URL des Eintrags:https://elib.dlr.de/111271/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Spatiotemporal Scene Interpretation of Space Videos via Deep Neural Network and Tracklet Analysis
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Mou, Lichaolichao.mou (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiao Xiangdlr-imf/tum-lmfNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2016
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.1109/igarss.2016.7729468
Seitenbereich:Seiten 1823-1826
Status:veröffentlicht
Stichwörter:space videos, scene labeling, deep learning, activity analysis, traffic density estimation
Veranstaltungstitel:IGARSS 2016
Veranstaltungsort:Beijing, China
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:10 Juli 2016
Veranstaltungsende:15 Juli 2016
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben hochauflösende Fernerkundungsverfahren (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung
Hinterlegt von: Mou, LiChao
Hinterlegt am:24 Feb 2017 10:52
Letzte Änderung:24 Apr 2024 20:16

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.