Ghamisi, Pedram und Höfle, Bernhard (2017) LiDAR Data Classification Using Extinction Profiles and a Composite Kernel Support Vector Machine. IEEE Geoscience and Remote Sensing Letters, 14 (5), Seiten 659-663. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/lgrs.2017.2669304. ISSN 1545-598X.
PDF
686kB |
Offizielle URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7873288
Kurzfassung
This letter proposes a novel framework for the classification of LiDAR-derived features. In this context, several features are extracted directly from the LiDAR point cloud data using aggregated local point neighborhoods, including laser echo ratio, variance of point elevation, plane fitting residuals, and echo intensity. Additionally, the LiDAR Digital Surface Model (DSM) is input to our classification. Thus, both the LiDAR raster DSM and also rich geometric and also backscatter 3D point cloud information aggregated to images are considered in our workflow. These extracted features are characterized as base images to be fed to extinction profiles to model spatial and contextual information. Then, a composite kernel SVM is investigated to efficiently integrate the elevation and spatial information suitable for the LiDAR data. Results indicate that the proposed method can obtain high classification accuracy using LiDAR data alone (e.g., more than 86% overall accuracy on the benchmark Houston LiDAR data using the standard set of training and test samples on all 15 classes) in a short CPU processing time.
elib-URL des Eintrags: | https://elib.dlr.de/111103/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | LiDAR Data Classification Using Extinction Profiles and a Composite Kernel Support Vector Machine | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | April 2017 | ||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 14 | ||||||||||||
DOI: | 10.1109/lgrs.2017.2669304 | ||||||||||||
Seitenbereich: | Seiten 659-663 | ||||||||||||
Herausgeber: |
| ||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||
ISSN: | 1545-598X | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Extended Multi-Extinction Profile, Composite Kernel SVM, LiDAR | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||
Hinterlegt von: | Ghamisi, Pedram | ||||||||||||
Hinterlegt am: | 16 Feb 2017 10:40 | ||||||||||||
Letzte Änderung: | 02 Nov 2023 14:44 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags