Geiß, Christian and Schauß, Anne and Riedlinger, Torsten and Dech, Stefan and Zelaya, Cecilia and Guzman, Nicolas and Hube, Mathias and Jokar Arsanjani, Jamal and Taubenböck, Hannes (2017) Joint use of remote sensing data and volunteered geographic information for exposure estimation: evidence from Valparaíso, Chile. Natural Hazards, 86, pp. 81-105. Springer. doi: 10.1007/s11069-016-2663-8. ISSN 0921-030X.
This is the latest version of this item.
![]() |
PDF
- Preprint version (submitted draft)
17MB |
Official URL: http://link.springer.com/article/10.1007/s11069-016-2663-8
Abstract
The impact of natural hazards on mankind has increased dramatically over the past decades. Global urbanization processes and increasing spatial concentrations of exposed elements induce natural hazard risk at a uniquely high level. To mitigate affiliated perils requires detailed knowledge about elements at risk. Considering a high spatiotemporal variability of elements at risk, detailed information is costly in terms of both time and economic resources and therefore often incomplete, aggregated, or outdated. To alleviate these restrictions, the availability of very-high-resolution satellite images promotes accurate and detailed analysis of exposure over various spatial scales with large-area coverage. In the past, valuable approaches were proposed; however, the design of information extraction procedures with a high level of automatization remains challenging. In this paper, we uniquely combine remote sensing data and volunteered geographic information from the OpenStreetMap project (OSM) (i.e., freely accessible geospatial information compiled by volunteers) for a highly automated estimation of crucial exposure components (i.e., number of buildings and population) with a high level of spatial detail. To this purpose, we first obtain labeled training segments from the OSM data in conjunction with the satellite imagery. This allows for learning a supervised algorithmic model (i.e., rotation forest) in order to extract relevant thematic classes of land use/land cover (LULC) from the satellite imagery. Extracted information is jointly deployed with information from the OSM data to estimate the number of buildings with regression techniques (i.e., a multi-linear model from ordinary least-square optimization and a nonlinear support vector regression model are considered). Analogously, urban LULC information is used in conjunction with OSM data to spatially disaggregate population information. Experimental results were obtained for the city of Valparaı´so in Chile. Thereby, we demonstrate the relevance of the approaches by estimating number of affected buildings and population referring to a historical tsunami event.
Item URL in elib: | https://elib.dlr.de/111043/ | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||||||||||||||
Title: | Joint use of remote sensing data and volunteered geographic information for exposure estimation: evidence from Valparaíso, Chile | ||||||||||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||||||||||
Date: | March 2017 | ||||||||||||||||||||||||||||||||||||||||
Journal or Publication Title: | Natural Hazards | ||||||||||||||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||||||||||||||
Volume: | 86 | ||||||||||||||||||||||||||||||||||||||||
DOI: | 10.1007/s11069-016-2663-8 | ||||||||||||||||||||||||||||||||||||||||
Page Range: | pp. 81-105 | ||||||||||||||||||||||||||||||||||||||||
Publisher: | Springer | ||||||||||||||||||||||||||||||||||||||||
ISSN: | 0921-030X | ||||||||||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||||||||||
Keywords: | Exposure, Risk, Vulnerability, Remote sensing, Volunteered geographic Information, Land-use–land-cover classification, Object-based image analysis, Rotation forest, Population disaggregation, Tsunami | ||||||||||||||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben Zivile Kriseninformation und Georisiken (old) | ||||||||||||||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security German Remote Sensing Data Center > Leitungsbereich DFD | ||||||||||||||||||||||||||||||||||||||||
Deposited By: | Geiß, Christian | ||||||||||||||||||||||||||||||||||||||||
Deposited On: | 14 Feb 2017 08:42 | ||||||||||||||||||||||||||||||||||||||||
Last Modified: | 02 Nov 2023 14:47 |
Available Versions of this Item
-
Joint use of remote sensing data and volunteered
geographic information for exposure estimation:
evidence from Valparaı´so, Chile. (deposited 14 Nov 2016 12:42)
- Joint use of remote sensing data and volunteered geographic information for exposure estimation: evidence from Valparaíso, Chile. (deposited 14 Feb 2017 08:42) [Currently Displayed]
Repository Staff Only: item control page