Geiß, Christian und Schauß, Anne und Riedlinger, Torsten und Dech, Stefan und Zelaya, Cecilia und Guzman, Nicolas und Hube, Mathias und Jokar Arsanjani, Jamal und Taubenböck, Hannes (2017) Joint use of remote sensing data and volunteered geographic information for exposure estimation: evidence from Valparaíso, Chile. Natural Hazards, 86, Seiten 81-105. Springer. doi: 10.1007/s11069-016-2663-8. ISSN 0921-030X.
Dies ist die aktuellste Version dieses Eintrags.
PDF
- Preprintversion (eingereichte Entwurfsversion)
17MB |
Offizielle URL: http://link.springer.com/article/10.1007/s11069-016-2663-8
Kurzfassung
The impact of natural hazards on mankind has increased dramatically over the past decades. Global urbanization processes and increasing spatial concentrations of exposed elements induce natural hazard risk at a uniquely high level. To mitigate affiliated perils requires detailed knowledge about elements at risk. Considering a high spatiotemporal variability of elements at risk, detailed information is costly in terms of both time and economic resources and therefore often incomplete, aggregated, or outdated. To alleviate these restrictions, the availability of very-high-resolution satellite images promotes accurate and detailed analysis of exposure over various spatial scales with large-area coverage. In the past, valuable approaches were proposed; however, the design of information extraction procedures with a high level of automatization remains challenging. In this paper, we uniquely combine remote sensing data and volunteered geographic information from the OpenStreetMap project (OSM) (i.e., freely accessible geospatial information compiled by volunteers) for a highly automated estimation of crucial exposure components (i.e., number of buildings and population) with a high level of spatial detail. To this purpose, we first obtain labeled training segments from the OSM data in conjunction with the satellite imagery. This allows for learning a supervised algorithmic model (i.e., rotation forest) in order to extract relevant thematic classes of land use/land cover (LULC) from the satellite imagery. Extracted information is jointly deployed with information from the OSM data to estimate the number of buildings with regression techniques (i.e., a multi-linear model from ordinary least-square optimization and a nonlinear support vector regression model are considered). Analogously, urban LULC information is used in conjunction with OSM data to spatially disaggregate population information. Experimental results were obtained for the city of Valparaı´so in Chile. Thereby, we demonstrate the relevance of the approaches by estimating number of affected buildings and population referring to a historical tsunami event.
elib-URL des Eintrags: | https://elib.dlr.de/111043/ | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||||||||||
Titel: | Joint use of remote sensing data and volunteered geographic information for exposure estimation: evidence from Valparaíso, Chile | ||||||||||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||||||||||
Datum: | März 2017 | ||||||||||||||||||||||||||||||||||||||||
Erschienen in: | Natural Hazards | ||||||||||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||||||||||
Band: | 86 | ||||||||||||||||||||||||||||||||||||||||
DOI: | 10.1007/s11069-016-2663-8 | ||||||||||||||||||||||||||||||||||||||||
Seitenbereich: | Seiten 81-105 | ||||||||||||||||||||||||||||||||||||||||
Verlag: | Springer | ||||||||||||||||||||||||||||||||||||||||
ISSN: | 0921-030X | ||||||||||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||||||||||
Stichwörter: | Exposure, Risk, Vulnerability, Remote sensing, Volunteered geographic Information, Land-use–land-cover classification, Object-based image analysis, Rotation forest, Population disaggregation, Tsunami | ||||||||||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Zivile Kriseninformation und Georisiken (alt) | ||||||||||||||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit Deutsches Fernerkundungsdatenzentrum > Leitungsbereich DFD | ||||||||||||||||||||||||||||||||||||||||
Hinterlegt von: | Geiß, Christian | ||||||||||||||||||||||||||||||||||||||||
Hinterlegt am: | 14 Feb 2017 08:42 | ||||||||||||||||||||||||||||||||||||||||
Letzte Änderung: | 02 Nov 2023 14:47 |
Verfügbare Versionen dieses Eintrags
-
Joint use of remote sensing data and volunteered
geographic information for exposure estimation:
evidence from Valparaı´so, Chile. (deposited 14 Nov 2016 12:42)
- Joint use of remote sensing data and volunteered geographic information for exposure estimation: evidence from Valparaíso, Chile. (deposited 14 Feb 2017 08:42) [Gegenwärtig angezeigt]
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags