Wagner, Peter und Nippold, Ronald und Gabloner, Sebastian und Margreiter, Martin (2016) Analyzing human driving data an approach motivated by data science methods. Chaos, Solitons and Fractals, 90, Seiten 37-45. Elsevier. doi: 10.1016/j.chaos.2016.02.008. ISSN 0960-0779.
PDF (preprint version)
382kB |
Kurzfassung
By analyzing a large data-base of car-driving data in a generic way, a few elementary facts on car-following have been found out. The inferences stem from the application of the mutual information to detect correlations to the data. Arguably, the most interesting fact is that the acceleration of the following vehicle depends mostly on the speed-difference to the lead vehicle. This seems to be a causal relationship, since acceleration follows speed-difference with an average delay of 0.5 s. Furthermore, the car-following process organizes itself in such a manner that there is a strong relation between speed and distance to the vehicle in front. In most cases, this is the dominant relationship in car-following. Additionally, acceleration depends only weakly on distance, which may be surprising and is at odds to a number of simple models that state an exclusive dependency between acceleration and distance.
elib-URL des Eintrags: | https://elib.dlr.de/110856/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Analyzing human driving data an approach motivated by data science methods | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | September 2016 | ||||||||||||||||||||
Erschienen in: | Chaos, Solitons and Fractals | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 90 | ||||||||||||||||||||
DOI: | 10.1016/j.chaos.2016.02.008 | ||||||||||||||||||||
Seitenbereich: | Seiten 37-45 | ||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||
ISSN: | 0960-0779 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Car-following; Big data analysis; Maximal information content | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||
HGF - Programmthema: | Verkehrsmanagement (alt) | ||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||
DLR - Forschungsgebiet: | V VM - Verkehrsmanagement | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - I.MoVe (alt) | ||||||||||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Verkehrssystemtechnik > Verkehrssimulation und -prognose | ||||||||||||||||||||
Hinterlegt von: | Wagner, Dr. Peter | ||||||||||||||||||||
Hinterlegt am: | 25 Jan 2017 09:57 | ||||||||||||||||||||
Letzte Änderung: | 14 Nov 2023 12:45 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags