elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Effects of Simulated Microgravity on Otolith Growth of Larval Zebrafish using a Rotating-Wall Vessel: Appropriate Rotation Speed and Fish Developmental Stage

Li, Xiaoyan and Anken, Ralf and Liyue, Liu and Wang, Gaohong and Liu, Yongding (2016) Effects of Simulated Microgravity on Otolith Growth of Larval Zebrafish using a Rotating-Wall Vessel: Appropriate Rotation Speed and Fish Developmental Stage. Microgravity Science and Technology. Springer. DOI: 10.1007/s12217-016-9518-5 ISSN 0938-0108

Full text not available from this repository.

Official URL: http://link.springer.com/article/10.1007/s12217-016-9518-5

Abstract

Stimulus dependence is a general feature of developing animal sensory systems. In this respect, it has extensively been shown earlier that fish inner ear otoliths can act as test masses as their growth is strongly affected by altered gravity such as hypergravity obtained using centrifuges, by (real) microgravity achieved during spaceflight or by simulated microgravity using a ground-based facility. Since flight opportunities are scarce, ground-based simulators of microgravity, using a wide variety of physical principles, have been developed to overcome this shortcoming. Not all of them, however, are equally well suited to provide functional weightlessness from the perspective of the biosystem under evaluation. Therefore, the range of applicability of a particular simulator has to be extensively tested. Earlier, we have shown that a Rotating-Wall Vessel (RWV) can be used to provide simulated microgravity for developing Zebrafish regarding the effect of rotation on otolith development. In the present study, we wanted to find the most effective speed of rotation and identify the appropriate developmental stage of Zebrafish, where effects are the largest, in order to provide a methodological basis for future in-depth analyses dedicated to the physiological processes underlying otolith growth at altered gravity. Last not least, we compared data on the effect of simulated microgravity on the size versus the weight of otoliths, since the size usually is measured in related studies due to convenience, but the weight more accurately approximates the physical capacity of an otolith. Maintaining embryos at 10 hours post fertilization (hpf) for three days in the RWV, we found that 15 revolutions per minute (rpm) yielded the strongest effects on otolith growth. Maintenance of Zebrafish staged at 10 hpf, 1 day post fertilization (dpf), 4 dpf, 7 dpf and 14 dpf for three days at 15 rpm resulted in the most prominent effects in 7 dpf larvae. Weighing versus measuring the size of otoliths yielded basically similar results, but the data gained by weighing were more distinct. Overall, our results clearly support the concept that the environmental gravity vector regulates fish otolith growth in terms of the pendulum model of otolith test masses, and that wall vessel rotation is a valuable means to provide functional weightlessness from the perspective of developing Zebrafish. We recommend that Zebrafish embryos staged 7 dpf (or possibly slightly elder) are rotated at 15 rpm in a Rotating-Wall Vessel as used in the present study for further experiments designed to elucidate the mechanisms underlying (altered gravity affected) otolith growth.

Item URL in elib:https://elib.dlr.de/110476/
Document Type:Article
Title:Effects of Simulated Microgravity on Otolith Growth of Larval Zebrafish using a Rotating-Wall Vessel: Appropriate Rotation Speed and Fish Developmental Stage
Authors:
AuthorsInstitution or Email of AuthorsAuthors ORCID iD
Li, Xiaoyaninstitute of hydrobiology, chinese academy of sciences, wuhan, chinaUNSPECIFIED
Anken, Ralfgerman aerospace center (dlr), institute of aerospace medicine, gravitational biology, cologne, germanyhttps://orcid.org/0000-0001-7490-6823
Liyue, LiuChina Zebrafish Resource Center, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, ChinaUNSPECIFIED
Wang, Gaohonginstitute of hydrobiology, chinese academy of sciences, wuhan, chinaUNSPECIFIED
Liu, Yongdinginstitute of hydrobiology, chinese academy of sciences, wuhan, chinaUNSPECIFIED
Date:2016
Journal or Publication Title:Microgravity Science and Technology
Refereed publication:Yes
Open Access:No
Gold Open Access:No
In SCOPUS:Yes
In ISI Web of Science:Yes
DOI :10.1007/s12217-016-9518-5
Publisher:Springer
ISSN:0938-0108
Status:Published
Keywords:vestibular system, otolith, simulated microgravity, Rotating Wall Vessel (RWV), zebrafish development
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Research under Space Conditions
DLR - Research area:Raumfahrt
DLR - Program:R FR - Forschung unter Weltraumbedingungen
DLR - Research theme (Project):R - Vorhaben Biowissenschaftliche Exp.-vorbereitung, R - Vorhaben Biowissenschaftliche Nutzerunterstützung
Location: Köln-Porz
Institutes and Institutions:Institute of Aerospace Medicine > Biomedical Research
Deposited By: Duwe, Helmut
Deposited On:11 Jan 2017 10:16
Last Modified:11 Jan 2017 10:16

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Copyright © 2008-2017 German Aerospace Center (DLR). All rights reserved.