Zhao, Rui (2016) Persons Activity Recognition in RGBD using Deep Learning. DLR-Interner Bericht. DLR-IB-RM-OP-2016-200. Masterarbeit. Technische Universität München. 35 S.
PDF
- Nur DLR-intern zugänglich
10MB |
Kurzfassung
The recognition of actions from video sequences has many applications in health monitoring, assisted living, surveillance, and smart homes. Despite advances in sensing, in particular related to 3D video, the methodologies to process the data are still subject to research. We demonstrate superior results by a system which combines recurrent neural Networks with convolutional neural networks in a voting approach. The GRU-based recurrent neural networks are particularly wellsuited to distinguish actions based on long-term Information from optical tracking data; the 3D-CNNs focus more on detailed, recent information from video data. The resulting Features are merged in an SVM which then classifies the movement. In this architecture, our method improves recognition rates of state-of-the-art methods by 14% on standard data sets.
elib-URL des Eintrags: | https://elib.dlr.de/110271/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Berichtsreihe (DLR-Interner Bericht, Masterarbeit) | ||||||||
Titel: | Persons Activity Recognition in RGBD using Deep Learning | ||||||||
Autoren: |
| ||||||||
Datum: | 2016 | ||||||||
Referierte Publikation: | Nein | ||||||||
Open Access: | Nein | ||||||||
Seitenanzahl: | 35 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | Video sequences, applications, health Monitoring, assisted living, surveillance, smart home | ||||||||
Institution: | Technische Universität München | ||||||||
Abteilung: | Department of Informatics | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Multisensorielle Weltmodellierung (alt) | ||||||||
Standort: | Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) | ||||||||
Hinterlegt von: | Schlögl, Birgit | ||||||||
Hinterlegt am: | 10 Jan 2017 09:42 | ||||||||
Letzte Änderung: | 10 Jan 2017 09:42 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags