elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Driven Learning for Driving: How Introspection Improves Semantic Mapping

Triebel, Rudolph und Grimmett, Hugo und Paul, Rohan und Posner, Ingmar (2016) Driven Learning for Driving: How Introspection Improves Semantic Mapping. In: Robotics Research, The 16th International Symposium ISRR Springer Tracts in Advanced Robotics, 114. Springer International Publishing Switzerland. Seiten 449-465. doi: 10.1007/978-3-319-28872-7_26. ISBN 978-3-3 19-28870-3.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

This paper explores the suitability of commonly employed classification methods to action-selection tasks in robotics, and argues that a classifier's introspective capacity is a vital but as yet largely under-appreciated attribute. As illustration we propose an active learning framework for semantic mapping in mobile robotics and demonstrate it in the context of autonomous driving. In this framework, data are selected for label disambiguation by a human supervisor using uncertainty sampling. Intuitively, an introspective classification framework - i.e. one which moderates its predictions by an estimate of how well it is placed to make a call in a particular situation-is particularly well suited to this task. To achieve an efficient implementation we extend the notion of introspection to a particular sparse Gaussian Process Classifier, the Informative Vector Machine (IVM). Furthermore, we leverage the information-theoretic nature of the IVM to formulate a principled mechanism for forgetting stale data, thereby bounding memory use and resulting in a truly lifelong learning system. Our evaluation on a publicly available dataset shows that an introspective active learner asks more informative questions compared to a more traditional non-introspective approach like a Support Vector Machine (SVM) and in so doing, outperforms the SVM in terms of learning rate while retaining efficiency for practical use.

elib-URL des Eintrags:https://elib.dlr.de/110074/
Dokumentart:Beitrag in einem Lehr- oder Fachbuch
Titel:Driven Learning for Driving: How Introspection Improves Semantic Mapping
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Triebel, RudolphRudolph.Triebel (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Grimmett, Hugohugo (at) robots.ox.ac.ukNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Paul, Rohanrohanp (at) robots.ox.ac.ukNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Posner, Ingmarhip (at) robots.ox.ac.ukNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Dezember 2016
Erschienen in:Robotics Research, The 16th International Symposium ISRR
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Band:114
DOI:10.1007/978-3-319-28872-7_26
Seitenbereich:Seiten 449-465
Verlag:Springer International Publishing Switzerland
Name der Reihe:Springer Tracts in Advanced Robotics
ISBN:978-3-3 19-28870-3
Status:veröffentlicht
Stichwörter:Semantic Mapping
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - On-Orbit Servicing [SY]
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013)
Hinterlegt von: Beinhofer, Gabriele
Hinterlegt am:02 Jan 2017 13:40
Letzte Änderung:02 Jan 2017 13:40

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.