elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Measurements of Turbulent Jet Mixing in a Turbulent Co-Flow Including the Influence of Periodic Forcing and Heating

Klinner, Joachim und Willert, Christian (2017) Measurements of Turbulent Jet Mixing in a Turbulent Co-Flow Including the Influence of Periodic Forcing and Heating. Flow Turbulence and Combustion, 98 (3), Seiten 751-779. Springer. doi: 10.1007/s10494-016-9789-3. ISSN 1386-6184.

[img] PDF (article) - Nur DLR-intern zugänglich
4MB
[img] Bild (GIF) (pulsed_injection_xz.gif) - Nur DLR-intern zugänglich
839kB
[img] Bild (GIF) (pulsed_injection_xy.gif) - Nur DLR-intern zugänglich
863kB

Offizielle URL: http://link.springer.com/article/10.1007/s10494-016-9789-3

Kurzfassung

In this work, the turbulent mixing of a confined coaxial jet in air is investigated by means of simultaneous particle image velocimetry and planar laser induced fluorescence of the acetone seeded flow injection. The jet is injected into a turbulent duct flow at atmospheric pressure through a 90 ∘ pipe bend. Measurements are conducted in a small scale windtunnel at constant mass flow rates and three modes of operation: isothermal steady jet injection at a Dean number of 20000 (Red=32000), pulsed isothermal injection at a Womersley number of 65 and steady injection at elevated jet temperatures of ΔT=50 K and ΔT=100 K. The experiment is aimed at providing statistically converged quantities of velocity, mass fraction, turbulent fluctuations and turbulent mass flux at several downstream locations. Stochastic error convergence over the number of samples is assessed within the outer turbulent shear layer. From 3000 samples the statistical error of time-averaged velocity and mass fraction is below 1 % while the error of Reynolds shear stress and turbulent mass flux components is in the of range 5-6 %. Profiles of axial velocity and turbulence intensity immediately downstream of the bend exit are in good agreement with hot-wire measurements from literature. During pulsed jet injection strong asymmetric growing of shear layer vortices lead to a skewed mass fraction profile in comparison with steady injection. Phase averaging of single shot PLIF-PIV measurements allows to track the asymmetric shear layer vortex evolvement and flow breakdown during a pulsation cycle with a resolution of 10∘. Steady injection with increased jet temperature supports mixing downstream from 6 nozzle diameters onward.

elib-URL des Eintrags:https://elib.dlr.de/109909/
Dokumentart:Zeitschriftenbeitrag
Titel:Measurements of Turbulent Jet Mixing in a Turbulent Co-Flow Including the Influence of Periodic Forcing and Heating
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Klinner, JoachimJoachim.Klinner (at) dlr.dehttps://orcid.org/0000-0003-2709-9664NICHT SPEZIFIZIERT
Willert, ChristianChris.Willert (at) dlr.dehttps://orcid.org/0000-0002-1668-0181NICHT SPEZIFIZIERT
Datum:18 März 2017
Erschienen in:Flow Turbulence and Combustion
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:98
DOI:10.1007/s10494-016-9789-3
Seitenbereich:Seiten 751-779
Verlag:Springer
ISSN:1386-6184
Status:veröffentlicht
Stichwörter:Turbulent mixing, Pipe bend, Acetone PLIF, Turbulent flux, Error convergence
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Antriebssysteme
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L ER - Engine Research
DLR - Teilgebiet (Projekt, Vorhaben):L - Virtuelles Triebwerk und Validierungsmethoden (alt)
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Antriebstechnik
Hinterlegt von: Klinner, Dr.-Ing. Joachim
Hinterlegt am:03 Apr 2017 10:01
Letzte Änderung:02 Nov 2023 14:51

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.