elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Canonical Stochastic Realization of Turbulent Sound Sources via Forced Linear Advection-Diffusion-Dissipation Equation

Ewert, Roland (2016) Canonical Stochastic Realization of Turbulent Sound Sources via Forced Linear Advection-Diffusion-Dissipation Equation. In: 22nd AIAA/CEAS Aeriacoustics Conference. 22nd AIAA/CEAS Aeroacoustics Conference, 30. Mai - 01. Jun. 2016, Lyon, Frankreich. doi: 10.2514/6.2016-2965.

[img] PDF (PDF)
5MB

Offizielle URL: http://arc.aiaa.org/doi/abs/10.2514/6.2016-2965

Kurzfassung

Stochastic sound sources derived from Reynolds Averaged Navier-Stokes (RANS) solution are recognized in Computational Aeroacoustics as one possible way to efficiently predict broadband sound. In this paper a stochastically forced linear advection-diffusion-dissipation equation is introduced. The model provides spectra and anisotropic two-point correlations that otherwise have to be incorporated in datum stochastic methods as additional model assumptions. The output are fluctuating velocity components, from which vortex sound sources derive. The forcing is white (delta-correlated) in time and possess a finite correlation length scale in space. The well-posedness is demonstrated in the paper. A solenoidal forcing term is shown to realize the correlation tensor of homogeneous isotropic turbulence together with a longitudinal turbulence spectrum that exhibits a plateau for lower frequencies followed by a characteristic power law roll-off and final cut-off. Exponent of decay and cut-off are adjustable. The stochastic partial differential equation involves a diffusion parameter, a time-scale, a re-distribution tensor, and a forcing variance. Transport equations for Reynolds stresses and turbulence kinetic energy derive from it that have the canonical form of major RANS transport equations. In particular, all parameters needed can be assigned to corresponding RANS parameters so that an accurate reproduction of RANS one-point statistics becomes feasible. For the generation of two-point statistics the hypothesis from turbulence modeling is adopted that the present model calibrated for homogeneous isotropic turbulence is also applicable for more general flows.

elib-URL des Eintrags:https://elib.dlr.de/109870/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Canonical Stochastic Realization of Turbulent Sound Sources via Forced Linear Advection-Diffusion-Dissipation Equation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Ewert, Rolandroland.ewert (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:31 Mai 2016
Erschienen in:22nd AIAA/CEAS Aeriacoustics Conference
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.2514/6.2016-2965
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
NICHT SPEZIFIZIERTAIAA, www.aiaa.orgNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Name der Reihe:AIAA Paper 2016-2965
Status:veröffentlicht
Stichwörter:CAA, RANS, FRPM, FLADD, Stochastisc Sound Sources
Veranstaltungstitel:22nd AIAA/CEAS Aeroacoustics Conference
Veranstaltungsort:Lyon, Frankreich
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:30. Mai - 01. Jun. 2016
Veranstalter :AIAA / CEAS
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Flugzeuge
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AR - Aircraft Research
DLR - Teilgebiet (Projekt, Vorhaben):L - Simulation und Validierung (alt)
Standort: Braunschweig
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > Technische Akustik
Hinterlegt von: Ewert, Dr.-Ing. Roland
Hinterlegt am:20 Dez 2016 13:39
Letzte Änderung:11 Jul 2023 15:14

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.