elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Analysis of limiting factors for Li-Ion battery performance and life-time: Micro-structure resolved simulations with BEST

Danner, Timo and Hein, Simon and Latz, Arnulf (2016) Analysis of limiting factors for Li-Ion battery performance and life-time: Micro-structure resolved simulations with BEST. GeoDict User Days, 05.-06. Oktober 2016, Kaiserslautern, Deutschland.

[img] PDF
105kB

Abstract

In our presentation we will show examples of micro-structure resolved simulations in our battery simulation tool BEST (Battery and Electrochemistry Simulation Tool [1]). BEST was originally developed for the simulation of Li-Ion batteries in the former group of one of the authors (AL) at the Fraunhofer ITWM Kaiserslautern. The governing equations are derived in a rigorous approach from fundamental non-equilibrium thermodynamics and are implemented based on the CoRheos framework for complex and granular flow. DLR/HIU and Fraunhofer ITWM are collaborating to develop models for additional physical and chemical processes as well as new battery chemistries and to implement them in the software package. BEST is under constant active development and gives insights to fundamental physical processes as well as the latest developments for state-of-the-art battery materials. Li-Ion batteries are commonly used in portable electronic devices due to their outstanding energy and power density. Remaining issues which hinder a breakthrough e.g. for stationary storage applications or electric vehicles are high production costs as well as safety risks. Recently, new battery concepts with thicker electrodes (>300 µm) or solid electrolytes were suggested to resolve these issues [2]. In both cases mass and charge transport limitations can be severe at already small currents due to long transport pathways, small transport coefficients, or inhomogeneous material properties. This could be a trigger for degradation effects, such as Li plating at the graphite anode, and reduces the lifetime of the battery. A thorough understanding of relevant processes within the electrodes is urgently needed to avoid these problems. The electrode micro-structures of our simulations are either taken from tomography data [3] or geometries generated in GeoDict. Our detailed 3D studies allow important insights on cell operation and reveal detrimental structural properties for battery performance. For instance, we are able to quantify the effect of an inhomogeneous distribution of conductive additive in the case of thick electrodes or imperfect impregnation of the electrodes with the solid electrolyte. Moreover, we investigate the occurrence of degradation processes, such as Li plating during battery charge. Our approach allows analyzing limiting processes and critical operation conditions and predicts possible optimization and operation strategies to improve the performance and life-time of Li-Ion batteries.

Item URL in elib:https://elib.dlr.de/109224/
Document Type:Conference or Workshop Item (Speech)
Title:Analysis of limiting factors for Li-Ion battery performance and life-time: Micro-structure resolved simulations with BEST
Authors:
AuthorsInstitution or Email of AuthorsAuthors ORCID iD
Danner, Timotimo.danner (at) dlr.dehttps://orcid.org/0000-0003-2336-6059
Hein, Simonsimon.hein (at) dlr.deUNSPECIFIED
Latz, Arnulfarnulf.latz (at) dlr.deUNSPECIFIED
Date:5 October 2016
Refereed publication:No
Open Access:Yes
Gold Open Access:No
In SCOPUS:No
In ISI Web of Science:No
Status:Published
Keywords:3D modeling, Li-Ion batteries, BEST
Event Title:GeoDict User Days
Event Location:Kaiserslautern, Deutschland
Event Type:Workshop
Event Dates:05.-06. Oktober 2016
Organizer:Math2Market
HGF - Research field:Energy
HGF - Program:Storage and Cross-linked Infrastructures
HGF - Program Themes:Electrochemical Energy Storage
DLR - Research area:Energy
DLR - Program:E EV - Energy process technology
DLR - Research theme (Project):E - Electrochemical Processes (Batteries) (old)
Location: Stuttgart
Institutes and Institutions:Institute of Engineering Thermodynamics > Electrochemical Energy Technology
Deposited By: Danner, Timo
Deposited On:08 Dec 2016 13:14
Last Modified:31 Jul 2019 20:06

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Copyright © 2008-2017 German Aerospace Center (DLR). All rights reserved.