Hong, Danfeng und Yokoya, Naoto und Zhu, Xiao Xiang (2016) The K-LLE Algorithm for Nonlinear Dimensionality Reduction of Large-Scale Hyperspectral Data. In: 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, WHISPERS 2016, Seiten 1-5. IEEE Xplore. WHISPERS 2016, 2016-08-21 - 2016-08-24, Los Angeles, USA. doi: 10.1109/WHISPERS.2016.8071754.
PDF
772kB |
Kurzfassung
This work addresses nonlinear dimensionality reduction by means of locally linear embedding (LLE) for large-scale hyperspectral data. The LLE algorithm depends on spectral decomposition to a great extent, resulting in computational complexity and storage-costing while calculating the embedding of the low-dimensional data, particularly for large-scale hyperspectral data. LLE is not applicable to dimensionality reduction of large-scale hyperspectral data using general personal computers. In this paper, we present a novel method named K-LLE which introduces K-means clustering into LLE to deal with this issue. We firstly utilize K-cluster centers to represent the manifold structure of data instead of all data points, and next regard the K-Cluster centers as a bridge between the manifold structure and all data in order to obtain the low-dimensional representation for each data point without handling the complex spectral decomposition. Finally, classification is explored as a potential application to validate the proposed algorithm. Experimental results on two hyperspectral datasets demonstrate the effectiveness and superiority of the proposed algorithm.
elib-URL des Eintrags: | https://elib.dlr.de/109189/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
Titel: | The K-LLE Algorithm for Nonlinear Dimensionality Reduction of Large-Scale Hyperspectral Data | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2016 | ||||||||||||||||
Erschienen in: | 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, WHISPERS 2016 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/WHISPERS.2016.8071754 | ||||||||||||||||
Seitenbereich: | Seiten 1-5 | ||||||||||||||||
Verlag: | IEEE Xplore | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | hyperspectral dimensionality reduction, large-scale, manifold learning, K-means clustering | ||||||||||||||||
Veranstaltungstitel: | WHISPERS 2016 | ||||||||||||||||
Veranstaltungsort: | Los Angeles, USA | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 21 August 2016 | ||||||||||||||||
Veranstaltungsende: | 24 August 2016 | ||||||||||||||||
Veranstalter : | IEEE GRSS | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||
Hinterlegt von: | Hong, Danfeng | ||||||||||||||||
Hinterlegt am: | 08 Dez 2016 08:35 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:14 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags