Hong, Danfeng und Yokoya, Naoto und Zhu, Xiao Xiang (2016) Local Manifold Learning with Robust Neighbors Selection for Hyperspectral Dimensionality Reduction. In: International Geoscience and Remote Sensing Symposium (IGARSS), Seiten 40-43. IEEE Xplore. IGARSS 2016, 2016-07-10 - 2016-07-15, Beijing, China. doi: 10.1109/IGARSS.2016.7729001. ISBN 978-1-5090-3333-1. ISSN 2153-7003.
PDF
420kB |
Offizielle URL: http://ieeexplore.ieee.org/document/7729001/
Kurzfassung
Manifold learning has been successfully applied to hyperspectral dimensionality reduction to embed nonlinear and nonconvex manifolds in the data. However, dimensionality reduction by manifold learning is sensitive to non-uniform data distribution and the selection of neighbors. To address the two issues to some extents, in this work a new manifold framework based on locality linear embedding (LLE), namely local normalization and local feature selection (LNLFS), is proposed. Classification is explored as a potential application to validate the proposed algorithm. Classification accuracy using data obtained using different dimensionality reduction methods is evaluated and compared, while applying two kinds of strategies for selecting the training and test samples: random sampling and region-based sampling. Experimental results show the classification accuracy obtained with LNLFS is superior to state-of-the-art dimensionality reduction methods.
elib-URL des Eintrags: | https://elib.dlr.de/109187/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vorlesung) | ||||||||||||||||
Titel: | Local Manifold Learning with Robust Neighbors Selection for Hyperspectral Dimensionality Reduction | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Januar 2016 | ||||||||||||||||
Erschienen in: | International Geoscience and Remote Sensing Symposium (IGARSS) | ||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/IGARSS.2016.7729001 | ||||||||||||||||
Seitenbereich: | Seiten 40-43 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | IEEE Xplore | ||||||||||||||||
ISSN: | 2153-7003 | ||||||||||||||||
ISBN: | 978-1-5090-3333-1 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | hyperspectral image, dimensionality reduction, manifold learning, local normalization, local feature selection, non-uniform data distribution | ||||||||||||||||
Veranstaltungstitel: | IGARSS 2016 | ||||||||||||||||
Veranstaltungsort: | Beijing, China | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 10 Juli 2016 | ||||||||||||||||
Veranstaltungsende: | 15 Juli 2016 | ||||||||||||||||
Veranstalter : | GRSS | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||
Hinterlegt von: | Hong, Danfeng | ||||||||||||||||
Hinterlegt am: | 08 Dez 2016 08:26 | ||||||||||||||||
Letzte Änderung: | 21 Okt 2024 09:44 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags