Ghamisi, Pedram und Höfle, Bernhard und Zhu, Xiao Xiang (2017) Hyperspectral and LiDAR Data Fusion Using Extinction Profiles and Deep Convolutional Neural Network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10 (6), Seiten 3011-3024. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2016.2634863. ISSN 1939-1404.
PDF
12MB |
Offizielle URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7786851
Kurzfassung
This paper proposes a novel framework for the fusion of hyperspectral and light detection and ranging-derived rasterized data using extinction profiles (EPs) and deep learning. In order to extract spatial and elevation information from both the sources, EPs that include different attributes (e.g., height, area, volume, diagonal of the bounding box, and standard deviation) are taken into account. Then, the derived features are fused via either Feature stacking or graph-based feature fusion. Finally, the fused Features are fed to a deep learning-based classifier (convolutional neural network with logistic regression) to ultimately produce the classification map. The proposed approach is applied to two datasets acquired in Houston, TX, USA, and Trento, Italy. Results indicate that the proposed approach can achieve accurate classification results compared to other approaches. It should be noted that, in this paper, the concept of deep learning has been used for the first time to fuse LiDAR and hyperspectral features, which provides new opportunities for further research.
elib-URL des Eintrags: | https://elib.dlr.de/109123/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Hyperspectral and LiDAR Data Fusion Using Extinction Profiles and Deep Convolutional Neural Network | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Juni 2017 | ||||||||||||||||
Erschienen in: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 10 | ||||||||||||||||
DOI: | 10.1109/JSTARS.2016.2634863 | ||||||||||||||||
Seitenbereich: | Seiten 3011-3024 | ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 1939-1404 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Convolutional neural network, deep learning, extinction profile, graph-based feature fusion, hyperspectral, LiDAR, random forest, support vector machines | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||
Hinterlegt von: | Ghamisi, Pedram | ||||||||||||||||
Hinterlegt am: | 07 Dez 2016 12:29 | ||||||||||||||||
Letzte Änderung: | 02 Nov 2023 13:35 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags