elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Redox-oxide-based modular structures of porous ceramic foams and honeycombs for efficient sensible/thermochemical solar energy storage

Agrafiotis, Christos und de Oliveira, Lamark und Roeb, Martin und Sattler, Christian (2016) Redox-oxide-based modular structures of porous ceramic foams and honeycombs for efficient sensible/thermochemical solar energy storage. 6th International Congress on Ceramics, 21.-25. Aug. 2016, Dresden, Deutschland.

[img] PDF (Presentation) - Nur DLR-intern zugänglich
8MB

Kurzfassung

The current, sensible regenerative heat storage in porous solid materials in air-operated solar thermal plants can be hybridized with thermochemical storage within the same volume via coating the heat exchange modules with oxides of multivalent metals undergoing reduction/oxidation reactions accompanied by heat effects (e.g. Co3O4/CoO, Mn2O3/Mn3O4) or by manufacturing them entirely of such oxides. In this way solar-heated air from the receiver in addition to sensibly heating the porous solid can induce the endothermic chemical reduction of the oxide from its state with the higher metal valence to that of the lower; the thermal energy can be entirely recovered by the reverse exothermic oxidation reaction (in addition to sensible heat) during off-sun operation. The construction modularity of these systems provides for the design of the entire storage reactor/heat exchanger as a structure with rational 3-D spatial variation of redox oxide materials chemistry and solid material porosity, tailored to the local temperature and flow conditions, to enhance the utilization of the heat transfer fluid and the storage of its enthalpy. Comparative sensible-only and sensible-thermochemical storage studies on a variety of redox-oxide-coated porous ceramic honeycomb and foam cascades have been performed from laboratory test rigs up to the level of a solar-irradiated receiver–heat storage module combination. The effects of oxide composition and porous support on heat storage efficiency, process cyclability and system longevity are presented and discussed in conjunction to issues for further research.

elib-URL des Eintrags:https://elib.dlr.de/108879/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Redox-oxide-based modular structures of porous ceramic foams and honeycombs for efficient sensible/thermochemical solar energy storage
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Agrafiotis, ChristosChristos.Agrafiotis (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
de Oliveira, Lamarklamark.de-oliveira (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Roeb, MartinMartin.Roeb (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Sattler, ChristianChristian.Sattler (at) dlr.dehttps://orcid.org/0000-0002-4314-1124NICHT SPEZIFIZIERT
Datum:24 August 2016
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:thermochemical heat storage, sensible heat storage, redox cycles, oxide ceramics, porous ceramics
Veranstaltungstitel:6th International Congress on Ceramics
Veranstaltungsort:Dresden, Deutschland
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:21.-25. Aug. 2016
Veranstalter :International Ceramic Federation (ICF)
HGF - Forschungsbereich:Energie
HGF - Programm:Erneuerbare Energie
HGF - Programmthema:Solare Brennstoffe
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SF - Solarforschung
DLR - Teilgebiet (Projekt, Vorhaben):E - Solare Brennstoffe (alt)
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Solarforschung > Solare Verfahrenstechnik
Hinterlegt von: Sattler, Prof. Dr. Christian
Hinterlegt am:05 Dez 2016 12:40
Letzte Änderung:20 Jun 2021 15:48

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.