Durner, Maximilian und Marton, Zoltan-Csaba und Hillenbrand, Ulrich und Ali, Haider und Kleinsteuber, Martin (2016) Active Classifier Selection for RGB-D Object Categorization using a Markov Random Field Ensemble Method. In: Ninth International Conference on Machine Vision (ICMV2016). The 9th International Conference on Machine Vision, 2016-11-18 - 2016-11-20, Nice, France. doi: 10.1117/12.2268551.
PDF
3MB |
Offizielle URL: http://icmv.org/
Kurzfassung
In this work, a new ensemble method for the task of category recognition in different environments is presented. The focus is on service robotic perception in an open environment, where the robot’s task is to recognize previously unseen objects of predefined categories, based on training on a public dataset. We propose an ensemble learning approach to be able to flexibly combine complementary sources of information (different state-of-the-art descriptors computed on color and depth images), based on a Markov Random Field (MRF). By exploiting its specific characteristics, the MRF ensemble method can also be executed as a Dynamic Classifier Selection (DCS) system. In the experiments, the committee- and topology-dependent performance boost of our ensemble is shown. Despite reduced computational costs and using less information, our strategy performs on the same level as common ensemble approaches. Finally, the impact of large differences between datasets is analyzed.
elib-URL des Eintrags: | https://elib.dlr.de/108578/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Zusätzliche Informationen: | Selected as the best oral presentation of the conference | ||||||||||||||||||||||||
Titel: | Active Classifier Selection for RGB-D Object Categorization using a Markov Random Field Ensemble Method | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | November 2016 | ||||||||||||||||||||||||
Erschienen in: | Ninth International Conference on Machine Vision (ICMV2016) | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.1117/12.2268551 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | ensemble learning, active classification, RGB-D object recognition | ||||||||||||||||||||||||
Veranstaltungstitel: | The 9th International Conference on Machine Vision | ||||||||||||||||||||||||
Veranstaltungsort: | Nice, France | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 18 November 2016 | ||||||||||||||||||||||||
Veranstaltungsende: | 20 November 2016 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Multisensorielle Weltmodellierung (alt) | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||||||||||
Hinterlegt von: | Durner, Maximilian | ||||||||||||||||||||||||
Hinterlegt am: | 17 Jul 2017 10:23 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:13 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags