Tings, Björn und Velotto, Domenico (2018) Comparison of ship wake detectability on C-band and X-band SAR. International Journal of Remote Sensing, 39 (13), Seiten 4451-4468. Taylor & Francis. doi: 10.1080/01431161.2018.1425568. ISSN 0143-1161.
PDF
4MB |
Offizielle URL: https://doi.org/10.1080/01431161.2018.1425568
Kurzfassung
This article describes how a detectability model can be trained in the form of a binary classifier from a data set of synthetic aperture radar (SAR) images of ship wakes, augmented by automatic identification system data. While detectability models for ship signatures exist, ship wake detectability models are only available for simulated data. In order to improve existing ship wake detection algorithms on SAR imagery, there is a need for building a data-driven detectability model which may provide useful a-priori information. A binary L2-regularized logistic regression classifier is trained for each investigated data subset. The dependency on the SAR working frequency is evaluated by analysing a large number of X- and C-band images. In the X-band, the probability of detecting a wake shows dependencies on vessel size and velocity as well as prevailing wind speed. In the C-band, these dependencies are maintained, but with a general reduction in the correlation. This fact led us to the conclusion that, for our data set, ship wakes are more easily imaged in the X-band rather than in the C-band. This is an important outcome, which is supported by a qualitative and quantitative analysis of a large data set of TerraSAR-X and two independent C-band sensors, specifically RADARSAT-2 and Sentinel-1.
elib-URL des Eintrags: | https://elib.dlr.de/108121/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Comparison of ship wake detectability on C-band and X-band SAR | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 15 Januar 2018 | ||||||||||||
Erschienen in: | International Journal of Remote Sensing | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 39 | ||||||||||||
DOI: | 10.1080/01431161.2018.1425568 | ||||||||||||
Seitenbereich: | Seiten 4451-4468 | ||||||||||||
Verlag: | Taylor & Francis | ||||||||||||
ISSN: | 0143-1161 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | ship wake detection, machine learning, Synthetic Aperture Radar, SAR | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - SAR-Methoden | ||||||||||||
Standort: | Bremen , Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||
Hinterlegt von: | Kaps, Ruth | ||||||||||||
Hinterlegt am: | 24 Jan 2018 12:22 | ||||||||||||
Letzte Änderung: | 02 Nov 2023 12:08 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags