DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Patch-based Image Classification for Sentinel-1 and Sentinel-2 Earth Observation Image Data Products

Georgescu, Florin-Andrei and Tanase, Radu and Datcu, Mihai and Raducanu, Dan (2016) Patch-based Image Classification for Sentinel-1 and Sentinel-2 Earth Observation Image Data Products. In: Proceedings of ‘Living Planet Symposium 2016’, SP-740. Spacebooks Online. Living Planet Symposium 2016, 9-13 May 2016, Prague, Czech Republic. ISBN 978-92-9221-305-3 ISSN 1609-042X

Full text not available from this repository.

Official URL: http://www.spacebooks-online.com/product_info.php?cPath=104&products_id=17659&osCsid=6ac64d52e5dc1c4feccadac231729019


Due the continuous growth of Earth Observation (EO) image data collections acquired from a great variety of sensors, we can observe an increasing need for methods and techniques of querying remote sensing images, not only by their annotations but also by their semantic content. Various methods of content based image retrieval (CBIR) have been proposed in the remote sensing domain, but no general approaches are available. Regardless of the used method, the CBIR systems have the same function, to identify the most similar images with the query image. Some authors developed powerful CBIR tools such as GeoIRIS system of Shyu C. et al. which is a content-based multimodal Geospatial Information Retrieval and Indexing System and includes automatic feature extraction, visual content mining from large-scale image databases, and high-dimensional database indexing for fast retrieval, KIM - knowledge-driven information mining proposed by Datcu M. et al. which is based on human-centered concepts and implements new features and functions allowing improved feature extraction, search on a semantic level, the availability of collected knowledge and interactive knowledge discovery, SemQuery,developed by Sheikholeslami G. et al., which is a semantics-based clustering and indexing approach, used to support visual queries on heterogeneous features of images. Regarding the idea of finding a common ground between synthetic aperture radar (SAR), optical data and even data fusion products, the goal is to develop an application capable to join feature extraction algorithms and classification algorithms. Therefore, this paper is presenting a framework of feature extraction methods for SAR, Multispectral and Data fusion image products that can be used in automatic or semi-automatic classification of urban areas. Our results demonstrate the usability of patch based image classification techniques that can be applied on Sentinel-1 and Sentinel-2 public data sets. Also, another goal is to demonstrate how data fusion products perform in the context of patch based image classification and automatic annotation of urban areas. In order to do so, the selected scene is grouped in a few generic classes like buildings, vegetation, forest, water, streets etc. Then we use feature extraction methods such as Gabor filter banks and Weber Local Descriptors in combination with Support Vector Machine (SVM) and k-Nearest Neighbours (k-NN) to define an application to be tested on SAR, optical data and data fusion products. The result of the study is intended to establish the optimum number of classes that can be found in the Sentinel-1 and Sentinel-2 images when using patch based image classification techniques. Also another important objective of this paper is to determine the best patch sizes suitable for this type of classification and that can be used to obtain the best results for Sentinel-1 and Sentinel-2 EO images.

Item URL in elib:https://elib.dlr.de/108020/
Document Type:Conference or Workshop Item (Poster)
Additional Information:sp-740\posters\pmeth_91georgescu.pdf
Title:Patch-based Image Classification for Sentinel-1 and Sentinel-2 Earth Observation Image Data Products
AuthorsInstitution or Email of AuthorsAuthors ORCID iD
Georgescu, Florin-Andreimilitary technical academy, romaniaUNSPECIFIED
Tanase, Raduuniversity politehnica of bucharest, bucharest, romaniaUNSPECIFIED
Datcu, Mihaimihai.datcu (at) dlr.deUNSPECIFIED
Raducanu, Danmilitary technical academy, bucharest, romaniaUNSPECIFIED
Date:11 May 2016
Journal or Publication Title:Proceedings of ‘Living Planet Symposium 2016’
Refereed publication:No
Open Access:No
Gold Open Access:No
In ISI Web of Science:No
Publisher:Spacebooks Online
Series Name:ESA Special Publications (on CD)
Keywords:CBIR, Sentinel 1, Sentinel 2
Event Title:Living Planet Symposium 2016
Event Location:Prague, Czech Republic
Event Type:international Conference
Event Dates:9-13 May 2016
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Erdbeobachtung
DLR - Research theme (Project):R - Vorhaben hochauflösende Fernerkundungsverfahren
Location: Oberpfaffenhofen
Institutes and Institutions:Remote Sensing Technology Institute > Photogrammetry and Image Analysis
Deposited By: Dumitru, Corneliu Octavian
Deposited On:18 Nov 2016 10:46
Last Modified:18 Nov 2016 10:46

Repository Staff Only: item control page

Help & Contact
electronic library is running on EPrints 3.3.12
Copyright © 2008-2017 German Aerospace Center (DLR). All rights reserved.