elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Patch-based Image Classification for Sentinel-1 and Sentinel-2 Earth Observation Image Data Products

Georgescu, Florin-Andrei und Tanase, Radu und Datcu, Mihai und Raducanu, Dan (2016) Patch-based Image Classification for Sentinel-1 and Sentinel-2 Earth Observation Image Data Products. In: Proceedings of ‘Living Planet Symposium 2016’, SP-740. Spacebooks Online. Living Planet Symposium 2016, 2016-05-09 - 2016-05-13, Prague, Czech Republic. ISBN 978-92-9221-305-3. ISSN 1609-042X.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: http://www.spacebooks-online.com/product_info.php?cPath=104&products_id=17659&osCsid=6ac64d52e5dc1c4feccadac231729019

Kurzfassung

Due the continuous growth of Earth Observation (EO) image data collections acquired from a great variety of sensors, we can observe an increasing need for methods and techniques of querying remote sensing images, not only by their annotations but also by their semantic content. Various methods of content based image retrieval (CBIR) have been proposed in the remote sensing domain, but no general approaches are available. Regardless of the used method, the CBIR systems have the same function, to identify the most similar images with the query image. Some authors developed powerful CBIR tools such as GeoIRIS system of Shyu C. et al. which is a content-based multimodal Geospatial Information Retrieval and Indexing System and includes automatic feature extraction, visual content mining from large-scale image databases, and high-dimensional database indexing for fast retrieval, KIM - knowledge-driven information mining proposed by Datcu M. et al. which is based on human-centered concepts and implements new features and functions allowing improved feature extraction, search on a semantic level, the availability of collected knowledge and interactive knowledge discovery, SemQuery,developed by Sheikholeslami G. et al., which is a semantics-based clustering and indexing approach, used to support visual queries on heterogeneous features of images. Regarding the idea of finding a common ground between synthetic aperture radar (SAR), optical data and even data fusion products, the goal is to develop an application capable to join feature extraction algorithms and classification algorithms. Therefore, this paper is presenting a framework of feature extraction methods for SAR, Multispectral and Data fusion image products that can be used in automatic or semi-automatic classification of urban areas. Our results demonstrate the usability of patch based image classification techniques that can be applied on Sentinel-1 and Sentinel-2 public data sets. Also, another goal is to demonstrate how data fusion products perform in the context of patch based image classification and automatic annotation of urban areas. In order to do so, the selected scene is grouped in a few generic classes like buildings, vegetation, forest, water, streets etc. Then we use feature extraction methods such as Gabor filter banks and Weber Local Descriptors in combination with Support Vector Machine (SVM) and k-Nearest Neighbours (k-NN) to define an application to be tested on SAR, optical data and data fusion products. The result of the study is intended to establish the optimum number of classes that can be found in the Sentinel-1 and Sentinel-2 images when using patch based image classification techniques. Also another important objective of this paper is to determine the best patch sizes suitable for this type of classification and that can be used to obtain the best results for Sentinel-1 and Sentinel-2 EO images.

elib-URL des Eintrags:https://elib.dlr.de/108020/
Dokumentart:Konferenzbeitrag (Poster)
Zusätzliche Informationen:sp-740\posters\pmeth_91georgescu.pdf
Titel:Patch-based Image Classification for Sentinel-1 and Sentinel-2 Earth Observation Image Data Products
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Georgescu, Florin-Andreimilitary technical academy, romaniaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Tanase, Raduuniversity politehnica of bucharest, bucharest, romaniaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datcu, Mihaimihai.datcu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Raducanu, Danmilitary technical academy, bucharest, romaniaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:11 Mai 2016
Erschienen in:Proceedings of ‘Living Planet Symposium 2016’
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Band:SP-740
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
Ouwehand, L.NICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Verlag:Spacebooks Online
Name der Reihe:ESA Special Publications (on CD)
ISSN:1609-042X
ISBN:978-92-9221-305-3
Status:veröffentlicht
Stichwörter:CBIR, Sentinel 1, Sentinel 2
Veranstaltungstitel:Living Planet Symposium 2016
Veranstaltungsort:Prague, Czech Republic
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:9 Mai 2016
Veranstaltungsende:13 Mai 2016
Veranstalter :ESA
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben hochauflösende Fernerkundungsverfahren (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Dumitru, Corneliu Octavian
Hinterlegt am:18 Nov 2016 10:46
Letzte Änderung:24 Apr 2024 20:13

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.