elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Wind turbine wakes in forest and neutral plane wall boundary layer large-eddy simulations

Schröttle, Josef and Piotrowski, Zbigniew and Gerz, Thomas and Englberger, Antonia and Dörnbrack, Andreas (2016) Wind turbine wakes in forest and neutral plane wall boundary layer large-eddy simulations. Journal of Physics: Conference Series, 753, pp. 1-10. Institute of Physics (IOP) Publishing. doi: 10.1088/1742-6596/753/3/032058. ISSN 1742-6588.

[img] PDF
1MB

Official URL: http://dx.doi.org/10.1088/1742-6596/753/3/032058

Abstract

Wind turbine wake flow characteristics are studied in a strongly sheared and turbulent forest boundary layer and a neutral plane wall boundary layer flow. The reference simulations without wind turbine yield similar results as earlier large-eddy simulations by Shaw and Schumann (1992) and Porte-Agel et al. (2000). To use the fields from the homogeneous turbulent boundary layers on the fly as inflow fields for the wind turbine wake simulations, a new and efficient methodology was developed for the multiscale geophysical flow solver EULAG. With this method fully developed turbulent flow fields can be achieved upstream of the wind turbine which are independent of the wake flow. The large-eddy simulations reproduce known boundary-layer statistics as mean wind profile, momentum flux profile, and eddy dissipation rate of the plane wall and the forest boundary layer. The wake velocity deficit is more asymmetric above the forest and recovers faster downstream compared to the velocity deficit in the plane wall boundary layer. This is due to the inflection point in the mean streamwise velocity profile with corresponding turbulent coherent structures of high turbulence intensity in the strong shear flow above the forest.

Item URL in elib:https://elib.dlr.de/106441/
Document Type:Article
Title:Wind turbine wakes in forest and neutral plane wall boundary layer large-eddy simulations
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Schröttle, JosefDLR, IPAUNSPECIFIEDUNSPECIFIED
Piotrowski, ZbigniewInstitute of Meteorology and Water Management, Warsaw, PolandUNSPECIFIEDUNSPECIFIED
Gerz, ThomasDLR, IPAUNSPECIFIEDUNSPECIFIED
Englberger, AntoniaDLR, IPAUNSPECIFIEDUNSPECIFIED
Dörnbrack, AndreasDLR, IPAUNSPECIFIEDUNSPECIFIED
Date:2016
Journal or Publication Title:Journal of Physics: Conference Series
Refereed publication:Yes
Open Access:Yes
Gold Open Access:No
In SCOPUS:Yes
In ISI Web of Science:No
Volume:753
DOI:10.1088/1742-6596/753/3/032058
Page Range:pp. 1-10
Publisher:Institute of Physics (IOP) Publishing
ISSN:1742-6588
Status:Published
Keywords:wind turbine wake flow, EULAG, forest turbulence, large-eddy simulation
HGF - Research field:Energy
HGF - Program:Renewable Energies
HGF - Program Themes:other
DLR - Research area:Energy
DLR - Program:E SF - Solar research
DLR - Research theme (Project):E - Wind Energy (old)
Location: Oberpfaffenhofen
Institutes and Institutions:Institute of Atmospheric Physics > Transport Meteorology
Deposited By: Ziegele, Brigitte
Deposited On:10 Oct 2016 17:39
Last Modified:14 Dec 2023 11:36

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.