DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

3D Micro-Structure Resolved Simulations of Thick Li-Ion Batteries

Danner, Timo and Wen, Tianyi and Singh, Madhav and Kaiser, Jörg and Latz, Arnulf (2016) 3D Micro-Structure Resolved Simulations of Thick Li-Ion Batteries. 18th International Meeting on Lithium Batteries (IMLB), 19.-24. Juni 2016, Chicago, Il, USA.

[img] PDF


Li-Ion batteries are commonly used in portable electronic devices due to their outstanding energy and power density. A remaining issue which hinders the breakthrough e.g. in the automotive sector is the high production cost. Recently, new battery concepts were presented to resolve this issue1. For low power applications, such as stationary storage, batteries with thicker electrodes (>300 µm) were suggested. High energy densities can be attained with only a few electrode layers which reduces production time and cost2,3. However, mass and charge transport limitations can be severe at already small C-rates due to long transport pathways. This could be a trigger for degradation effects, such as Li plating at the graphite anode, and reduces the lifetime of the battery. A thorough understanding of relevant processes within the electrodes is urgently needed to avoid these problems. In our contribution we present 3D micro-structure resolved simulations of thick (electrodes > 300µm) Graphite-NMC batteries based on our thermodynamically consistent modeling framework BEST4. The simulations are performed on electrode micro-structures which are either taken from tomography data provided in the literature (NMC)5 or virtual reconstructions of SEM images (graphite). A reliable parameterization of the model is absolutely mandatory to ensure the predictability of simulation results. However, the determination of parameters for 3D models is challenging due to the high computational load and a direct fit to experimental data is practically impossible. We propose a systematic approach based on half-cell measurements and supplemental 1+1D simulations. First, thermodynamic and transport parameters are extracted from dedicated OCV and conductivity measurements. In a second step an estimate of the kinetic parameters is obtained by a fit of the 1+1D model to discharge curves of thin electrodes (70 µm). The results of our 3D full cell simulations agree favorably with the experimental data3 at low C-rates. At high currents the experimental capacity is considerably smaller than the simulated one. Our detailed 3D studies allow important insights on cell operation and indicate that an inhomogeneous distribution of the conductive soot in the NMC electrode contributes to the loss in capacity. Moreover, we investigate the possibility of Li plating during battery charge. Based on our simulations we are able to predict an upper limit for the charging current. Therefore, our model provides a tool to avoid critical operating conditions affecting the lifetime of the battery.

Item URL in elib:https://elib.dlr.de/106390/
Document Type:Conference or Workshop Item (Poster)
Title:3D Micro-Structure Resolved Simulations of Thick Li-Ion Batteries
AuthorsInstitution or Email of AuthorsAuthor's ORCID iD
Danner, TimoTimo.Danner (at) dlr.dehttps://orcid.org/0000-0003-2336-6059
Latz, Arnulfarnulf.latz (at) dlr.deUNSPECIFIED
Date:20 June 2016
Refereed publication:Yes
Open Access:Yes
Gold Open Access:No
In ISI Web of Science:No
Keywords:Li-ion batteries, continuum modeling, micro-structure resolved simulation, thick electrodes
Event Title:18th International Meeting on Lithium Batteries (IMLB)
Event Location:Chicago, Il, USA
Event Type:international Conference
Event Dates:19.-24. Juni 2016
HGF - Research field:Energy
HGF - Program:Storage and Cross-linked Infrastructures
HGF - Program Themes:Electrochemical Energy Storage
DLR - Research area:Energy
DLR - Program:E EV - Energy process technology
DLR - Research theme (Project):E - Electrochemical Processes (Batteries) (old)
Location: Stuttgart
Institutes and Institutions:Institute of Engineering Thermodynamics > Computational Electrochemistry
Deposited By: Danner, Timo
Deposited On:12 Oct 2016 08:39
Last Modified:31 Jul 2019 20:03

Repository Staff Only: item control page

Help & Contact
electronic library is running on EPrints 3.3.12
Copyright © 2008-2017 German Aerospace Center (DLR). All rights reserved.