Ghamisi, Pedram und Souza, Roberto und Benediktsson, Jon Atli und Rittner, Leticia und Lotufo, Roberto und Zhu, Xiao Xiang (2016) Hyperspectral Data Classification Using Extended Extinction Profiles. IEEE Geoscience and Remote Sensing Letters, 13 (11), Seiten 1641-1645. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2016.2600244. ISSN 1545-598X.
HTML
3kB | |
PDF
1MB |
Offizielle URL: http://ieeexplore.ieee.org/document/7551242/
Kurzfassung
This letter proposes a new approach for the spectral–spatial classification of hyperspectral images, which is based on a novel extrema-oriented connected filtering technique, entitled as extended extinction profiles. The proposed approach progressively simplifies the first informative features extracted from hyperspectral data considering different attributes. Then, the classification approach is applied on two well-known hyperspectral data sets, i.e., Pavia University and Indian Pines, and compared with one of the most powerful filtering approaches in the literature, i.e., extended attribute profiles. Results indicate that the proposed approach is able to efficiently extract spatial information for the classification of hyperspectral images automatically and swiftly. In addition, an array-based node-oriented max-tree representation was carried out to efficiently implement the proposed approach.
elib-URL des Eintrags: | https://elib.dlr.de/106356/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Titel: | Hyperspectral Data Classification Using Extended Extinction Profiles | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | August 2016 | ||||||||||||||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
Band: | 13 | ||||||||||||||||||||||||||||
DOI: | 10.1109/LGRS.2016.2600244 | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 1641-1645 | ||||||||||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Extended multiextinction profile (EMEP), hyperspectral data classification, random forests (RFs), support vector machines (SVMs). | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||||||||||||||
Hinterlegt von: | Ghamisi, Pedram | ||||||||||||||||||||||||||||
Hinterlegt am: | 19 Okt 2016 10:00 | ||||||||||||||||||||||||||||
Letzte Änderung: | 03 Nov 2023 07:37 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags