elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks

Chen, Yushi und Jiang, Hanlu und Li, Chunyang und Jia, Xiuping und Ghamisi, Pedram (2016) Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks. IEEE Transactions on Geoscience and Remote Sensing, 54 (10), Seiten 6232-6251. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2016.2584107. ISSN 0196-2892.

[img] HTML
3kB
[img] PDF
6MB

Offizielle URL: http://ieeexplore.ieee.org/document/7514991/

Kurzfassung

Due to the advantages of deep learning, in this paper, a regularized deep feature extraction (FE) method is presented for hyperspectral image (HSI) classification using a convolutional neural network (CNN). The proposed approach employs several convolutional and pooling layers to extract deep features from HSIs, which are nonlinear, discriminant, and invariant. These features are useful for image classification and target detection. Furthermore, in order to address the common issue of imbalance between high dimensionality and limited availability of training samples for the classification of HSI, a few strategies such as L2 regularization and dropout are investigated to avoid overfitting in class data modeling. More importantly, we propose a 3-D CNN-based FE model with combined regularization to extract effective spectral-spatial features of hyperspectral imagery. Finally, in order to further improve the performance, a virtual sample enhanced method is proposed. The proposed approaches are carried out on three widely used hyperspectral data sets: Indian Pines, University of Pavia, and Kennedy Space Center. The obtained results reveal that the proposed models with sparse constraints provide competitive results to state-of-the-art methods. In addition, the proposed deep FE opens a new window for further research.

elib-URL des Eintrags:https://elib.dlr.de/106352/
Dokumentart:Zeitschriftenbeitrag
Titel:Deep Feature Extraction and Classification of Hyperspectral Images Based on Convolutional Neural Networks
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Chen, YushiHarbin Institute of TechnologyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Jiang, HanluHarbin Institute of TechnologyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Li, ChunyangHarbin Institute of TechnologyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Jia, XiupingUniversity of New South WalesNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Ghamisi, PedramDLR-IMF/TUM-LMFNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Oktober 2016
Erschienen in:IEEE Transactions on Geoscience and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:54
DOI:10.1109/TGRS.2016.2584107
Seitenbereich:Seiten 6232-6251
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
Plaza, Antonio J.aplaza (at) unex.esNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0196-2892
Status:veröffentlicht
Stichwörter:—Convolutional neural network (CNN), deep learning, feature extraction (FE), hyperspectral image (HSI) classification.
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben hochauflösende Fernerkundungsverfahren (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung
Hinterlegt von: Ghamisi, Pedram
Hinterlegt am:19 Okt 2016 09:59
Letzte Änderung:31 Jul 2019 20:03

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.