Ghamisi, Pedram und Chen, Yushi und Zhu, Xiao Xiang (2016) A Self-Improving Convolution Neural Network for the Classification of Hyperspectral Data. IEEE Geoscience and Remote Sensing Letters, 13 (10), Seiten 1537-1541. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2016.2595108. ISSN 1545-598X.
HTML
3kB | |
PDF
286kB |
Offizielle URL: http://ieeexplore.ieee.org/document/7544576/
Kurzfassung
In this letter, a self-improving convolutional neural network (CNN) based method is proposed for the classification of hyperspectral data. This approach solves the so-called curse of dimensionality and the lack of available training samples by iteratively selecting the most informative bands suitable for the designed network via fractional order Darwinian particle swarm optimization. The selected bands are then fed to the classification system to produce the final classification map. Experimental results have been conducted with two well-known hyperspectral data sets: Indian Pines and Pavia University. Results indicate that the proposed approach significantly improves a CNN-based classification method in terms of classification accuracy. In addition, this letter uses the concept of dither for the first time in the remote sensing community to tackle overfitting.
elib-URL des Eintrags: | https://elib.dlr.de/106348/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | A Self-Improving Convolution Neural Network for the Classification of Hyperspectral Data | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Oktober 2016 | ||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 13 | ||||||||||||||||
DOI: | 10.1109/LGRS.2016.2595108 | ||||||||||||||||
Seitenbereich: | Seiten 1537-1541 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Convolutional neural network (CNN), deep learning, feature selection, fractional order Darwinian particle swarm optimization (FODPSO), hyperspectral image classification. | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||
Hinterlegt von: | Ghamisi, Pedram | ||||||||||||||||
Hinterlegt am: | 19 Okt 2016 09:57 | ||||||||||||||||
Letzte Änderung: | 27 Nov 2023 12:57 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags