elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

The LET Procedure for Prosthetic Myocontrol: Towards Multi-DOF Control Using Single-DOF Activations

Nowak, Markus und Castellini, Claudio (2016) The LET Procedure for Prosthetic Myocontrol: Towards Multi-DOF Control Using Single-DOF Activations. PLoS One, 11 (9), Seiten 1-20. Public Library of Science (PLoS). doi: 10.1371/journal.pone.0161678. ISSN 1932-6203.

[img] PDF
1MB

Kurzfassung

Simultaneous and proportional myocontrol of dexterous hand prostheses is to a large extent still an open problem. With the advent of commercially and clinically available multi-fingered hand prostheses there are now more independent degrees of freedom (DOFs) in prostheses than can be effectively controlled using surface electromyography (sEMG), the current standard human-machine interface for hand amputees. In particular, it is uncertain, whether several DOFs can be controlled simultaneously and proportionally by exclusively calibrating the intended activation of single DOFs. The problem is currently solved by training on all required combinations. However, as the number of available DOFs grows, this approach becomes overly long and poses a high cognitive burden on the subject. In this paper we present a novel approach to overcome this problem. Multi-DOF activations are artificially modelled from single-DOF ones using a simple linear combination of sEMG signals, which are then added to the training set. This procedure, which we named LET (Linearly Enhanced Training), provides an augmented data set to any machine-learning-based intent detection system. In two experiments involving intact subjects, one offline and one online, we trained a standard machine learning approach using the full data set containing single- and multi-DOF activations as well as using the LET-augmented data set in order to evaluate the performance of the LET procedure. The results indicate that the machine trained on the latter data set obtains worse results in the offline experiment compared to the full data set. However, the online implementation enables the user to perform multi-DOF tasks with almost the same precision as single-DOF tasks without the need of explicitly training multi-DOF activations. Moreover, the parameters involved in the system are statistically uniform across subjects.

elib-URL des Eintrags:https://elib.dlr.de/106070/
Dokumentart:Zeitschriftenbeitrag
Titel:The LET Procedure for Prosthetic Myocontrol: Towards Multi-DOF Control Using Single-DOF Activations
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Nowak, Markusmarkus.nowak (at) dlr.dehttps://orcid.org/0000-0002-0840-5155NICHT SPEZIFIZIERT
Castellini, ClaudioClaudio.Castellini (at) dlr.dehttps://orcid.org/0000-0002-7346-2180NICHT SPEZIFIZIERT
Datum:2016
Erschienen in:PLoS One
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:11
DOI:10.1371/journal.pone.0161678
Seitenbereich:Seiten 1-20
Verlag:Public Library of Science (PLoS)
ISSN:1932-6203
Status:veröffentlicht
Stichwörter:Prosthetics, machine learning, rehabilitation robotics, assistive robotics, electromyography, EMG
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben Intelligente Mobilität (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013) > Kognitive Robotik
Hinterlegt von: Castellini, Dr. Claudio
Hinterlegt am:04 Nov 2016 13:10
Letzte Änderung:28 Nov 2023 08:44

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.