DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Actively Cooled Thermal Protections for Future Space Vehicles through Sandwich Structured Ceramic Matrix Composites with Engineered Porous Cores

Ferrari, L. and Barbato, M. and Ortona, A. and Esser, Burkard and Petkov, Ivaylo and Kuhn, Markus and Gianella, S. and Barcena, J. and Jimenez, C. and Francesconi, D. (2016) Actively Cooled Thermal Protections for Future Space Vehicles through Sandwich Structured Ceramic Matrix Composites with Engineered Porous Cores. 8th European Workshop on Thermal Protection Systems and Hot Structures, 19.-22. April 2016, Noordwijk, Niederlande.

Full text not available from this repository.


Ceramic cellular structures and ceramic matrix composites (CMCs) are promising materials’ configurations for Thermal Protection Systems (TPS) of future space vehicles. This is because of the good thermal and fluid dynamic properties of their cellular cores coupled with a matchless resistance in harsh environments of their CMC skins. Indeed, their high specific surface area, low weight and oxidation resistance makes them ideal materials for gas cooled TPS. In detail, the high temperature active cooling configuration of the TPS investigated in this work consists of a sandwich structure composed of a highly porous Si‐SiC core coupled with SiCf/SiCm or Cf/Si‐SiCm composite skins. These structures, actively cooled exploiting their internal porosity, present several advantages over a similar passively cooled configuration. Compared with their passive Counterparts (previously developed in the FP7 project SMARTEES) they can lower materials’ temperatures on the skin facing the plasma and reduce the thermal shocks aftermaths avoiding the heat flux to go back and forth through them during a typical re‐entry thermal profile. In the frame of the FP7 project THOR, three‐dimensional thermo fluid dynamics analysis was first performed in order to evaluate temperature and pressure drop in the cellular structure and the CMCs during a re‐entry trajectory. The simulations, aiming at optimizing TPS configuration, were performed with the CFD ANSYS‐Fluent software package, analysed several cellular ceramics structures by varying: porosity, the coolant fluid, mass flows, and CMC composition. Sandwich components were separately produced by polymer infiltration and pyrolysis ( for the SiCf/SiCm CMC) and by reactive melt infiltration for both, the Cf/Si‐SiCm composite and the Si‐SiC cellular structures. They were finally joined with preceramic precursors in the case of SiCf/SiCm ‐to‐Si‐SiC lattices, while, due to different CTEs Cf/Si‐SiCm CMC were just held together by fixations Si‐SiC. Plasma wind tunnel tests were performed in a standard re‐entry condition. Cooling was performed with different gases and mass flows. Data are reported and discussed.

Item URL in elib:https://elib.dlr.de/105523/
Document Type:Conference or Workshop Item (Speech)
Title:Actively Cooled Thermal Protections for Future Space Vehicles through Sandwich Structured Ceramic Matrix Composites with Engineered Porous Cores
AuthorsInstitution or Email of AuthorsAuthors ORCID iD
Esser, BurkardBurkard.Esser (at) dlr.deUNSPECIFIED
Petkov, IvayloIvaylo.Petkov (at) dlr.deUNSPECIFIED
Kuhn, MarkusMarkus.Kuhn (at) dlr.deUNSPECIFIED
Gianella, S.ErbicolUNSPECIFIED
Barcena, J.TecnaliaUNSPECIFIED
Jimenez, C.TecnaliaUNSPECIFIED
Francesconi, D.Thales AleniaUNSPECIFIED
Date:July 2016
Refereed publication:No
Open Access:No
Gold Open Access:No
In ISI Web of Science:No
Keywords:Ceramic cellular structures, Ceramic Matrix Composite, Thermal protection, Active cooling, Atmospheric entry
Event Title:8th European Workshop on Thermal Protection Systems and Hot Structures
Event Location:Noordwijk, Niederlande
Event Type:international Conference
Event Dates:19.-22. April 2016
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Space Transport
DLR - Research area:Raumfahrt
DLR - Program:R RP - Raumtransport
DLR - Research theme (Project):R - Raumfahrzeugsysteme - Rückkehrtechnologie
Location: Köln-Porz , Stuttgart
Institutes and Institutions:Institute of Aerodynamics and Flow Technology > Über- und Hyperschalltechnologien
Institute of Structures and Design > Space System Integration
Deposited By: Esser, Dr.-Ing. Burkard
Deposited On:31 Aug 2016 07:40
Last Modified:01 Dec 2018 19:52

Repository Staff Only: item control page

Help & Contact
electronic library is running on EPrints 3.3.12
Copyright © 2008-2017 German Aerospace Center (DLR). All rights reserved.