Gaidon, Adrien and Wang, Qiao and Cabon, Yohann and Vig, Eleonora (2016) Virtual Worlds as Proxy for Multi-Object Tracking Analysis. In: Proceedings of Computer Vision and Pattern Recognition 2016, pp. 4340-4349. IEEE Xplore. Conference on Computer Vision and Pattern Recognition 2016, 27-30 June 2016, Las Vegas, USA. doi: 10.1109/CVPR.2016.470.
![]() |
PDF
676kB |
Official URL: http://cvpr2016.thecvf.com/program/news_updates#proceedings
Abstract
Modern computer vision algorithms typically require expensive data acquisition and accurate manual labeling. In this work, we instead leverage the recent progress in computer graphics to generate fully labeled, dynamic, and photo-realistic proxy virtual worlds. We propose an efficient real-to-virtual world cloning method, and validate our approach by building and publicly releasing a new video dataset, called “Virtual KITTI” 1, automatically labeled with accurate ground truth for object detection, tracking, scene and instance segmentation, depth, and optical flow. We provide quantitative experimental evidence suggesting that (i) modern deep learning algorithms pre-trained on real data behave similarly in real and virtual worlds, and (ii) pre-training on virtual data improves performance. As the gap between real and virtual worlds is small, virtual worlds enable measuring the impact of various weather and imaging conditions on recognition performance, all other things being equal. We show these factors may affect drastically otherwise high-performing deep models for tracking.
Item URL in elib: | https://elib.dlr.de/105154/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||||||
Title: | Virtual Worlds as Proxy for Multi-Object Tracking Analysis | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2016 | ||||||||||||||||||||
Journal or Publication Title: | Proceedings of Computer Vision and Pattern Recognition 2016 | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||
DOI: | 10.1109/CVPR.2016.470 | ||||||||||||||||||||
Page Range: | pp. 4340-4349 | ||||||||||||||||||||
Publisher: | IEEE Xplore | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | Multi-Object Tracking Analysis | ||||||||||||||||||||
Event Title: | Conference on Computer Vision and Pattern Recognition 2016 | ||||||||||||||||||||
Event Location: | Las Vegas, USA | ||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||
Event Dates: | 27-30 June 2016 | ||||||||||||||||||||
Organizer: | IEEE Computer Society and the Computer Vision Foundation (CVF) | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Transport | ||||||||||||||||||||
HGF - Program Themes: | Traffic Management (old) | ||||||||||||||||||||
DLR - Research area: | Transport | ||||||||||||||||||||
DLR - Program: | V VM - Verkehrsmanagement | ||||||||||||||||||||
DLR - Research theme (Project): | V - Vabene++ (old) | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > Photogrammetry and Image Analysis | ||||||||||||||||||||
Deposited By: | INVALID USER | ||||||||||||||||||||
Deposited On: | 20 Jul 2016 10:54 | ||||||||||||||||||||
Last Modified: | 27 Jul 2023 08:00 |
Repository Staff Only: item control page