Gaidon, Adrien und Wang, Qiao und Cabon, Yohann und Vig, Eleonora (2016) Virtual Worlds as Proxy for Multi-Object Tracking Analysis. In: Proceedings of Computer Vision and Pattern Recognition 2016, Seiten 4340-4349. IEEE Xplore. Conference on Computer Vision and Pattern Recognition 2016, 2016-06-27 - 2016-06-30, Las Vegas, USA. doi: 10.1109/CVPR.2016.470.
PDF
676kB |
Offizielle URL: http://cvpr2016.thecvf.com/program/news_updates#proceedings
Kurzfassung
Modern computer vision algorithms typically require expensive data acquisition and accurate manual labeling. In this work, we instead leverage the recent progress in computer graphics to generate fully labeled, dynamic, and photo-realistic proxy virtual worlds. We propose an efficient real-to-virtual world cloning method, and validate our approach by building and publicly releasing a new video dataset, called “Virtual KITTI” 1, automatically labeled with accurate ground truth for object detection, tracking, scene and instance segmentation, depth, and optical flow. We provide quantitative experimental evidence suggesting that (i) modern deep learning algorithms pre-trained on real data behave similarly in real and virtual worlds, and (ii) pre-training on virtual data improves performance. As the gap between real and virtual worlds is small, virtual worlds enable measuring the impact of various weather and imaging conditions on recognition performance, all other things being equal. We show these factors may affect drastically otherwise high-performing deep models for tracking.
elib-URL des Eintrags: | https://elib.dlr.de/105154/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | Virtual Worlds as Proxy for Multi-Object Tracking Analysis | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2016 | ||||||||||||||||||||
Erschienen in: | Proceedings of Computer Vision and Pattern Recognition 2016 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/CVPR.2016.470 | ||||||||||||||||||||
Seitenbereich: | Seiten 4340-4349 | ||||||||||||||||||||
Verlag: | IEEE Xplore | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Multi-Object Tracking Analysis | ||||||||||||||||||||
Veranstaltungstitel: | Conference on Computer Vision and Pattern Recognition 2016 | ||||||||||||||||||||
Veranstaltungsort: | Las Vegas, USA | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 27 Juni 2016 | ||||||||||||||||||||
Veranstaltungsende: | 30 Juni 2016 | ||||||||||||||||||||
Veranstalter : | IEEE Computer Society and the Computer Vision Foundation (CVF) | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||
HGF - Programmthema: | Verkehrsmanagement (alt) | ||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||
DLR - Forschungsgebiet: | V VM - Verkehrsmanagement | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Vabene++ (alt) | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||
Hinterlegt von: | UNGÜLTIGER BENUTZER | ||||||||||||||||||||
Hinterlegt am: | 20 Jul 2016 10:54 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:10 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags