Jetley, Saumya and Murray, Naila and Vig, Eleonora (2016) End-to-End Saliency Mapping via Probability Distribution Prediction. In: Proceedings of Computer Vision and Pattern Recognition 2016, pp. 5753-5761. IEEE Xplore. Conference on Computer Vision and Pattern Recognition 2016, 2016-06-27 - 2016-06-30, Las Vegas, USA. doi: 10.1109/CVPR.2016.620.
![]() |
PDF
1MB |
Official URL: http://cvpr2016.thecvf.com/program/news_updates#proceedings
Abstract
Most saliency estimation methods aim to explicitly model low-level conspicuity cues such as edges or blobs and may additionally incorporate top-down cues using face or text detection. Data-driven methods for training saliency mod- els using eye-fixation data are increasingly popular, par- ticularly with the introduction of large-scale datasets and deep architectures. However, current methods in this lat- ter paradigm use loss functions designed for classification or regression tasks whereas saliency estimation is evalu- ated on topographical maps. In this work, we introduce a new saliency map model which formulates a map as a generalized Bernoulli distribution. We then train a deep ar- chitecture to predict such maps using novel loss functions which pair the softmax activation function with measures designed to compute distances between probability distri- butions. We show in extensive experiments the effective- ness of such loss functions over standard ones on four pub- lic benchmark datasets, and demonstrate improved perfor- mance over state-of-the-art saliency methods.
Item URL in elib: | https://elib.dlr.de/105153/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Poster) | ||||||||||||||||
Title: | End-to-End Saliency Mapping via Probability Distribution Prediction | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 2016 | ||||||||||||||||
Journal or Publication Title: | Proceedings of Computer Vision and Pattern Recognition 2016 | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | No | ||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||
DOI: | 10.1109/CVPR.2016.620 | ||||||||||||||||
Page Range: | pp. 5753-5761 | ||||||||||||||||
Publisher: | IEEE Xplore | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | End-to-End Saliency Mapping | ||||||||||||||||
Event Title: | Conference on Computer Vision and Pattern Recognition 2016 | ||||||||||||||||
Event Location: | Las Vegas, USA | ||||||||||||||||
Event Type: | international Conference | ||||||||||||||||
Event Start Date: | 27 June 2016 | ||||||||||||||||
Event End Date: | 30 June 2016 | ||||||||||||||||
Organizer: | IEEE Computer Society and the Computer Vision Foundation (CVF) | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Transport | ||||||||||||||||
HGF - Program Themes: | Traffic Management (old) | ||||||||||||||||
DLR - Research area: | Transport | ||||||||||||||||
DLR - Program: | V VM - Verkehrsmanagement | ||||||||||||||||
DLR - Research theme (Project): | V - Vabene++ (old) | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > Photogrammetry and Image Analysis | ||||||||||||||||
Deposited By: | INVALID USER | ||||||||||||||||
Deposited On: | 20 Jul 2016 10:52 | ||||||||||||||||
Last Modified: | 24 Apr 2024 20:10 |
Repository Staff Only: item control page