Jetley, Saumya und Murray, Naila und Vig, Eleonora (2016) End-to-End Saliency Mapping via Probability Distribution Prediction. In: Proceedings of Computer Vision and Pattern Recognition 2016, Seiten 5753-5761. IEEE Xplore. Conference on Computer Vision and Pattern Recognition 2016, 2016-06-27 - 2016-06-30, Las Vegas, USA. doi: 10.1109/CVPR.2016.620.
|
PDF
1MB |
Offizielle URL: http://cvpr2016.thecvf.com/program/news_updates#proceedings
Kurzfassung
Most saliency estimation methods aim to explicitly model low-level conspicuity cues such as edges or blobs and may additionally incorporate top-down cues using face or text detection. Data-driven methods for training saliency mod- els using eye-fixation data are increasingly popular, par- ticularly with the introduction of large-scale datasets and deep architectures. However, current methods in this lat- ter paradigm use loss functions designed for classification or regression tasks whereas saliency estimation is evalu- ated on topographical maps. In this work, we introduce a new saliency map model which formulates a map as a generalized Bernoulli distribution. We then train a deep ar- chitecture to predict such maps using novel loss functions which pair the softmax activation function with measures designed to compute distances between probability distri- butions. We show in extensive experiments the effective- ness of such loss functions over standard ones on four pub- lic benchmark datasets, and demonstrate improved perfor- mance over state-of-the-art saliency methods.
| elib-URL des Eintrags: | https://elib.dlr.de/105153/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
| Titel: | End-to-End Saliency Mapping via Probability Distribution Prediction | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 2016 | ||||||||||||||||
| Erschienen in: | Proceedings of Computer Vision and Pattern Recognition 2016 | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Ja | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Nein | ||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||
| DOI: | 10.1109/CVPR.2016.620 | ||||||||||||||||
| Seitenbereich: | Seiten 5753-5761 | ||||||||||||||||
| Verlag: | IEEE Xplore | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | End-to-End Saliency Mapping | ||||||||||||||||
| Veranstaltungstitel: | Conference on Computer Vision and Pattern Recognition 2016 | ||||||||||||||||
| Veranstaltungsort: | Las Vegas, USA | ||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
| Veranstaltungsbeginn: | 27 Juni 2016 | ||||||||||||||||
| Veranstaltungsende: | 30 Juni 2016 | ||||||||||||||||
| Veranstalter : | IEEE Computer Society and the Computer Vision Foundation (CVF) | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Verkehr | ||||||||||||||||
| HGF - Programmthema: | Verkehrsmanagement (alt) | ||||||||||||||||
| DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
| DLR - Forschungsgebiet: | V VM - Verkehrsmanagement | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | V - Vabene++ (alt) | ||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
| Hinterlegt von: | UNGÜLTIGER BENUTZER | ||||||||||||||||
| Hinterlegt am: | 20 Jul 2016 10:52 | ||||||||||||||||
| Letzte Änderung: | 24 Apr 2024 20:10 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags