Plank, Simon (2016) Multi-sensor satellite-based monitoring of a volcanic eruption. 16th ONERA DLR Aerospace Symposium (ODAS), 2016-06-21 - 2016-06-23, Oberpfaffenhofen, Deutschland.
PDF
3MB |
Abstract
This paper presents a combined analysis of multi-sensor satellite-based remote sensing data monitoring of a volcanic eruption – the 2014/15 Holuhraun fissure eruption in Iceland. Signalized by increasing seismic activity on 16 August 2014 onwards, a dike originated from the Bardarbunga Volcano broke through the Earth’s surface on 29 August 2014, causing one of the largest volcanic events in modern Icelandic history. Within this multi-sensor approach three different aspects are investigated: First, the development of the hotspot was monitored by analyzing MODIS imagery and nighttime acquisitions of Landsat-8. Furthermore, satellite data of DLR’s FireBIRD mission (TET-1 – Technology Experiment Carrier) were exploited to measure the temperature development of the lava over time. Second, gases emitted by the volcano, such as SO2 were investigated using data from satellites focusing on atmospheric remote sensing. SO2 total columns are retrieved from the ultra-violet spectrometer GOME-2 onboard the polar satellites MetOp-A and -B. Earthshine reflectances from nadir-view scans are measured by GOME-2 on a daily basis. SO2 emissions showed a strong increase when the fissure first erupted in late August 2014. Comparison with higher spatial resolution Earth observation satellite imagery showed a strong correlation between the development of the area covered by lava and the amount of SO2 emitted by the volcano. A time series of synthetic aperture radar (SAR) imagery acquired by TerraSAR-X and Sentinel-1 as well as a dataset of Landsat-8 daytime and WorldView-2/-3 acquisitions was used to monitor the spatio-temporal evolution of the lava extent.
Item URL in elib: | https://elib.dlr.de/104799/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||
Title: | Multi-sensor satellite-based monitoring of a volcanic eruption | ||||||||
Authors: |
| ||||||||
Date: | 21 June 2016 | ||||||||
Refereed publication: | No | ||||||||
Open Access: | Yes | ||||||||
Gold Open Access: | No | ||||||||
In SCOPUS: | No | ||||||||
In ISI Web of Science: | No | ||||||||
Page Range: | pp. 1-13 | ||||||||
Status: | Published | ||||||||
Keywords: | Volcano, SAR, Optical, Thermal | ||||||||
Event Title: | 16th ONERA DLR Aerospace Symposium (ODAS) | ||||||||
Event Location: | Oberpfaffenhofen, Deutschland | ||||||||
Event Type: | international Conference | ||||||||
Event Start Date: | 21 June 2016 | ||||||||
Event End Date: | 23 June 2016 | ||||||||
Organizer: | DLR, ONERA | ||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||
HGF - Program: | Space | ||||||||
HGF - Program Themes: | Earth Observation | ||||||||
DLR - Research area: | Raumfahrt | ||||||||
DLR - Program: | R EO - Earth Observation | ||||||||
DLR - Research theme (Project): | R - Vorhaben Zivile Kriseninformation und Georisiken (old) | ||||||||
Location: | Oberpfaffenhofen | ||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||
Deposited By: | Plank, Simon Manuel | ||||||||
Deposited On: | 28 Jun 2016 13:07 | ||||||||
Last Modified: | 24 Apr 2024 20:10 |
Repository Staff Only: item control page