Heirich, Oliver (2016) Bayesian Train Localization with Particle Filter, Loosely Coupled GNSS, IMU, and a Track Map. Journal of Sensors. Hindawi Publishing Corporation. doi: 10.1155/2016/2672640. ISSN 1687-725X.
PDF
1MB |
Offizielle URL: http://www.hindawi.com/journals/js/2016/2672640/
Kurzfassung
Train localization is safety-critical and therefore the approach requires a continuous availability and a track-selective accuracy. A probabilistic approach is followed up in order to cope with multiple sensors, measurement errors, imprecise information, and hidden variables as the topological position within the track network. The nonlinear estimation of the train localization posterior is addressed with a novel Rao-Blackwellized particle filter (RBPF) approach. There, embedded Kalman filters estimate certain linear state variables while the particle distribution can cope with the nonlinear cases of parallel tracks and switch scenarios. The train localization algorithmis further based on a trackmap andmeasurements froma GlobalNavigation Satellite System(GNSS) receiver and an inertial measurement unit (IMU). The GNSS integration is loosely coupled and the IMU integration is achieved without the common strapdown approach and suitable for low-cost IMUs.The implementation is evaluated with realmeasurements from a regional train at regular passenger service over 230 km of tracks with 107 split switches and parallel track scenarios of 58.5 km.The approach is analyzed with labeled data by means of ground truth of the traveled switch way. Track selectivity results reach 99.3% over parallel track scenarios and 97.2% of correctly resolved switch ways.
elib-URL des Eintrags: | https://elib.dlr.de/104268/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||
Titel: | Bayesian Train Localization with Particle Filter, Loosely Coupled GNSS, IMU, and a Track Map | ||||||||
Autoren: |
| ||||||||
Datum: | 13 Juni 2016 | ||||||||
Erschienen in: | Journal of Sensors | ||||||||
Referierte Publikation: | Ja | ||||||||
Open Access: | Ja | ||||||||
Gold Open Access: | Ja | ||||||||
In SCOPUS: | Ja | ||||||||
In ISI Web of Science: | Ja | ||||||||
DOI: | 10.1155/2016/2672640 | ||||||||
Verlag: | Hindawi Publishing Corporation | ||||||||
ISSN: | 1687-725X | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | Railway, train localization, track selective, multi sensor, navigation, Bayesian, particle filter, GNSS, IMU, map | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Verkehr | ||||||||
HGF - Programmthema: | Bodengebundener Verkehr (alt) | ||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||
DLR - Forschungsgebiet: | V BF - Bodengebundene Fahrzeuge | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - Next Generation Train III (alt), V - TrackScan (alt) | ||||||||
Standort: | Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nachrichtensysteme | ||||||||
Hinterlegt von: | Heirich, Dr.-Ing. Oliver | ||||||||
Hinterlegt am: | 18 Mai 2016 18:01 | ||||||||
Letzte Änderung: | 31 Okt 2023 07:44 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags