Riedel, Sebastian und Marton, Zoltan Csaba und Kriegel, Simon (2016) Multi-view Orientation Estimation using Bingham Mixture Models. In: 2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR 2016). IEEE International Conference on Automation, Quality and Testing, Robotics. AQTR 2016, 2016-05-19 - 2016-05-21, Cluj-Napoca, Romania. doi: 10.1109/AQTR.2016.7501381.
PDF
2MB |
Kurzfassung
This paper describes a multi-view pose estimation system, that is exploiting the mobility of a depth sensor through mounting it onto a robotic manipulator. Given a pose estimation algorithm that performs feature extraction and matching to a model database, we investigate the probabilistic modeling of the pose space as well as the measurement uncertainty, to be used in a sequential state estimation approach. Uncertainties in 3d position can be modeled in a parametric way by 3d Gaussians, but the space of rotations in 3d - the special orthogonal group SO(3) - requires approaches from directional statistics. A convenient representation for orientations are unit quaternions over which the Bingham distribution defines a parametric probability density function. The Bingham distribution also correctly accounts for the sign symmetry of orientation quaternions and leave degrees of freedom unconstrained (which is especially useful if an object is rotationally symmetric, with no unique quaternion describing its orientation). In our experiments we test different sequential fusion methods, optimize their parameters, and investigate how the derived filter performs in a case with high uncertainties.
elib-URL des Eintrags: | https://elib.dlr.de/104238/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Zusätzliche Informationen: | The file, which is provided here, is a draft version. Please refer to www.ieeexplore.com for the final version of the article. | ||||||||||||||||
Titel: | Multi-view Orientation Estimation using Bingham Mixture Models | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2016 | ||||||||||||||||
Erschienen in: | 2016 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR 2016) | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1109/AQTR.2016.7501381 | ||||||||||||||||
Name der Reihe: | Proceedings of IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR) | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Rotational Uncertainty, Probabilistic Modeling, Mixture Models, Sequential Estimation | ||||||||||||||||
Veranstaltungstitel: | IEEE International Conference on Automation, Quality and Testing, Robotics. AQTR 2016 | ||||||||||||||||
Veranstaltungsort: | Cluj-Napoca, Romania | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 19 Mai 2016 | ||||||||||||||||
Veranstaltungsende: | 21 Mai 2016 | ||||||||||||||||
Veranstalter : | IEEE Computer Society - Test Technology Technical Council | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Multisensorielle Weltmodellierung (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||
Hinterlegt von: | Riedel, Sebastian | ||||||||||||||||
Hinterlegt am: | 18 Jul 2016 14:14 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:09 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags