DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

The Earth Observation Image Librarian (EOLIB): The Data Mining Component of the TerraSAR-X Payload Ground Segment

Espinoza-Molina, Daniela and Manilici, Vlad and Dumitru, Corneliu and Reck, Christoph and Cui, Shiyong and Rotzoll, Henry and Hofmann, Mathias and Schwarz, Gottfried and Datcu, Mihai (2016) The Earth Observation Image Librarian (EOLIB): The Data Mining Component of the TerraSAR-X Payload Ground Segment. In: Big Data from Space (BiDS'16), pp. 228-231. European Union. Big Data from Space (BidS'16), 15-17 Mar 2016, Tenerife, Spain. doi: 10.2788/854791. ISBN 978-92-79-56980-7. ISSN 1831-9424.

[img] PDF

Official URL: http://publications.jrc.ec.europa.eu/repository/handle/JRC100655


In this paper we present the Earth Observation Image Librarian (called EOLib) as a new generation of Image Information Mining Systems. EOLib is operated in the Payload Ground Segment of TerraSAR-X. The main goal of EOLib is to provide semantic annotations of satellite image content and offer to the end user a semantic catalogue via a web user interface. Moreover, EOLib has more functionality such as searches based on image metadata and semantics, visual exploration of the image archives, metadata extraction, etc. The system consists of components such as a query engine, knowledge discovery in databases, visual data mining, epitome generation, and user services. EOLib is able to ingest a TerraSAR-X scene with 8000×8000 pixels in about three minutes. The EOLib workflow starts with the ingestion of a scene, it continues with the semantic annotation of the image content based on machine learning methods, and it ends with publishing the semantic catalogue and enabling the search by metadata and semantic image descriptions.

Item URL in elib:https://elib.dlr.de/103726/
Document Type:Conference or Workshop Item (Speech)
Title:The Earth Observation Image Librarian (EOLIB): The Data Mining Component of the TerraSAR-X Payload Ground Segment
AuthorsInstitution or Email of AuthorsAuthor's ORCID iD
Espinoza-Molina, Danieladaniela.espinozamolina (at) dlr.deUNSPECIFIED
Manilici, VladVlad.Manilici (at) dlr.deUNSPECIFIED
Dumitru, Corneliucorneliu.dumitru (at) dlr.deUNSPECIFIED
Reck, Christophchristoph.reck (at) dlr.deUNSPECIFIED
Cui, Shiyongshiyong.cui (at) dlr.deUNSPECIFIED
Rotzoll, Henryhenry.rotzoll (at) dlr.deUNSPECIFIED
Hofmann, Mathiasmathias.hofmann (at) dlr.deUNSPECIFIED
Schwarz, Gottfriedgottfried.schwarz (at) dlr.deUNSPECIFIED
Datcu, Mihaimihai.datcu (at) dlr.deUNSPECIFIED
Journal or Publication Title:Big Data from Space (BiDS'16)
Refereed publication:Yes
Open Access:Yes
Gold Open Access:No
In ISI Web of Science:No
DOI :10.2788/854791
Page Range:pp. 228-231
EditorsEmailEditor's ORCID iD
Soille, PierrePierre.Soille@jrc.ec.europa.euUNSPECIFIED
Marchetti, Pier Giorgiopier.giorgio.marchetti@esa.intUNSPECIFIED
Publisher:European Union
Keywords:Software architecture, image information mining, payload ground segment, data mining, Earth observation
Event Title:Big Data from Space (BidS'16)
Event Location:Tenerife, Spain
Event Type:international Conference
Event Dates:15-17 Mar 2016
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Earth Observation
DLR - Research theme (Project):R - Vorhaben hochauflösende Fernerkundungsverfahren (old)
Location: Oberpfaffenhofen
Institutes and Institutions:Remote Sensing Technology Institute > Photogrammetry and Image Analysis
German Remote Sensing Data Center
Deposited By: Schwarz, Gottfried
Deposited On:08 Apr 2016 14:49
Last Modified:31 Jul 2019 20:00

Repository Staff Only: item control page

Help & Contact
electronic library is running on EPrints 3.3.12
Copyright © 2008-2017 German Aerospace Center (DLR). All rights reserved.