elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Scaffold-free Tissue Formation Under Real and Simulated Microgravity Conditions

Aleshcheva, Ganna and Bauer, Johann and Hemmersbach, Ruth and Slumstrup, Lasse and Wehland, Markus and Infanger, Manfred and Grimm, Daniela (2016) Scaffold-free Tissue Formation Under Real and Simulated Microgravity Conditions. Basic and Clinical Pharmacology and Toxicology (BCPT), pp. 1-8. Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society) Published by Wiley Ltd. DOI: 10.1111/bcpt.12561 ISSN 1742-7843

Full text not available from this repository.

Official URL: http://onlinelibrary.wiley.com/doi/10.1111/bcpt.12561/abstract

Abstract

Scaffold-free tissue formation in microgravity is a new method in regenerative medicine and an important topic in Space Medicine. In this mini-review, we focus on recent findings in the field of tissue engineering that were observed by exposing cells to real microgravity in space or to devices simulating to at least some extent microgravity conditions on Earth (ground-based facilities). Under both conditions – real and simulated microgravity – a part of the cultured cells of various populations detaches from the bottom of a culture flask. The cells form three-dimensional (3D) aggregates resembling the organs from which the cells have been derived. As spaceflights are rare and extremely expensive, cell culture under simulated microgravity allows more comprehensive and frequent studies on the scaffold-free 3D tissue formation in some aspects, as a number of publications have proven during the last two decades. In this mini-review, we summarize data from our own studies and work from various researchers about tissue engineering of multi-cellular spheroids formed by cancer cells, tube formation by endothelial cells and cartilage formation by exposing the cells to ground-based facilities such as the 3D Random Positioning Machine, the 2D Fast-Rotating Clinostat or the Rotating Wall Vessel. Subsequently, we investigated self-organization of 3D aggregates without scaffolds pursuing to enhance the frequency of 3D formation and to enlarge the size of the organ-like aggregates. The density of the monolayer exposed to real or simulated microgravity as well as the composition of the culture media revealed an impact on the results. Genomic and proteomic alterations were induced by simulated microgravity. Under microgravity conditions, adherent cells expressed other genes than cells grown in spheroids. In this mini-review, the recent improvements in scaffold-free tissue formation are summarized and relationships between phenotypic and molecular appearance are highlighted.

Item URL in elib:https://elib.dlr.de/103596/
Document Type:Article
Title:Scaffold-free Tissue Formation Under Real and Simulated Microgravity Conditions
Authors:
AuthorsInstitution or Email of AuthorsAuthors ORCID iD
Aleshcheva, GannaOtto-von-Guericke-University Magdeburg, Clinic for Plastic, Aesthetic and Hand Surgery, Magdeburg, GermanyUNSPECIFIED
Bauer, JohannMax-Planck Institute for Biochemistry, Martinsried, GermanyUNSPECIFIED
Hemmersbach, RuthGerman Aerospace Center (DLR), Institute of Aerospace Medicine, Gravitational Biology, Cologne, GermanyUNSPECIFIED
Slumstrup, LasseAarhus University, Department of Biomedicine, Aarhus, DenmarkUNSPECIFIED
Wehland, MarkusOtto-von-Guericke-University Magdeburg, Clinic for Plastic, Aesthetic and Hand Surgery, Magdeburg, GermanyUNSPECIFIED
Infanger, ManfredOtto-von-Guericke-University Magdeburg, Clinic for Plastic, Aesthetic and Hand Surgery, Magdeburg, GermanyUNSPECIFIED
Grimm, DanielaAarhus University, Department of Biomedicine, Aarhus, DenmarkUNSPECIFIED
Date:2016
Journal or Publication Title:Basic and Clinical Pharmacology and Toxicology (BCPT)
Refereed publication:Yes
Open Access:No
Gold Open Access:No
In SCOPUS:No
In ISI Web of Science:No
DOI :10.1111/bcpt.12561
Page Range:pp. 1-8
Publisher:Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society) Published by Wiley Ltd
ISSN:1742-7843
Status:Published
Keywords:Scaffold-free tissue formation, Multi-cellular spheroids, Simulated microgravity, Clinostats, Random Positioning Machine, Rotating Wall Vessel
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Research under Space Conditions
DLR - Research area:Raumfahrt
DLR - Program:R FR - Forschung unter Weltraumbedingungen
DLR - Research theme (Project):R - Vorhaben Biowissenschaftliche Nutzerunterstützung
Location: Köln-Porz
Institutes and Institutions:Institute of Aerospace Medicine > Biomedical Research
Deposited By: Duwe, Helmut
Deposited On:06 Apr 2016 12:56
Last Modified:08 Mar 2018 18:39

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Copyright © 2008-2017 German Aerospace Center (DLR). All rights reserved.