elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Adaptive and Tractable Bayesian Context Inference for Resource Constrained Devices

Frank, Korbinian (2011) Adaptive and Tractable Bayesian Context Inference for Resource Constrained Devices. Dissertation, Waterford Institute of Technology.

[img] PDF - Nur DLR-intern zugänglich
11MB

Kurzfassung

Context inference is necessary in ubiquitous computing to provide information about contextual information which is not directly measurable from sensors or obtained from other information sources. Server based, central inference would not scale due to the expected amount of context requests. Mobile, distributed context inference faces problems because of the high computational complexity of inference mechanisms. Bayesian inference techniques are particularly well suited, as they allow for more flexible modelling of situations than propositional logic, are always decidable as opposed to higher order logics, are intelligible to humans as opposed to neural networks and allow for uncertain or missing information. As inference in them however is NP-hard, methods have to be introduced to fit them to the requirements of ubiquitous computing and mobile, resource constrained devices. To this end, this work proposes to divide Bayesian networks for context inference into modules, called Bayeslets. Bayeslets can be composed among each other to fulfil an inference request via interface nodes about which additional assumptions are made: Considering input nodes as observed, more efficient inference methods can possibly be applied and by defining explicit output nodes for connection, a relevancy based dynamic composition of Bayeslets can be realised, so the evaluated number of Bayeslets always stays at a minimum. The inference time of Bayeslets can be further reduced by adapting edges and value ranges to the user's personal requirements and the current situation. The application of these concepts is shown in general examples of high level context used in the user's smart space, in his work environment, as well as in road traffic. Experimental results show that this process results in a significant reduction of the inference load. The Bayeslets for location and human motion related activity are of particular importance for context awareness and therefore considered and evaluated in detail. The set of tools proposed in this thesis allows to apply a fully Bayesian approach to context inference, fulfilling the requirements of ubiquitous computing and mobile, resource constrained devices.

elib-URL des Eintrags:https://elib.dlr.de/102469/
Dokumentart:Hochschulschrift (Dissertation)
Titel:Adaptive and Tractable Bayesian Context Inference for Resource Constrained Devices
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Frank, Korbiniankorbinian.frank (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Oktober 2011
Erschienen in:multicon verlag, Berlin, Germany
Referierte Publikation:Ja
Open Access:Nein
Seitenanzahl:250
Status:veröffentlicht
Stichwörter:Bayesian networks, Bayeslets, context inference, resource constrained devices, positioning, activity recognition, cooperative adaptive cruise control, V2V communications
Institution:Waterford Institute of Technology
Abteilung:Department of Computing, Mathematics and Physics
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Kommunikation und Navigation
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R KN - Kommunikation und Navigation
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben GNSS2/Neue Dienste und Produkte (alt), V - Fahrzeugintelligenz (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Kommunikation und Navigation > Nachrichtensysteme
Hinterlegt von: Sand, Dr Stephan
Hinterlegt am:29 Nov 2016 11:53
Letzte Änderung:29 Nov 2016 11:53

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.