Krause, Daniel (2016) A physically based micromechanical approach to model damage initiation and evolution of fiber reinforced polymers under fatigue loading conditions. Composites Part B Engineering, 87, Seiten 176-195. Elsevier. doi: 10.1016/j.compositesb.2015.10.012. ISSN 1359-8368.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: http://dx.doi.org/10.1016/j.compositesb.2015.10.012
Kurzfassung
The hypothesis of this work is that the fatigue behavior of a composite material is governed by its matrix. By characterizing and modeling the quasi-static and cyclic behavior of the pure polymer matrix, the transverse crack initiation and evolution of a composite under fatigue loading can be studied on a micromechanical level. Extensive characterization of the epoxy resin system Araldite LY564/Aradur22962 is conducted with special emphasis on the hystersis energy. A novel physically based fatigue failure criterion for polymers under multiaxial loading conditions is derived from these experimental results. To overcome the limitations of experimental accuracy and scatter, a compensation procedure is presented. For the incorporation in a micromechanical analysis, a viscoplastic material model from the literature is modified and utilized. A linear viscous network of Maxwell elements is compared with a nonlinear approach. It is found that even though the results show an indication of viscous nonlinearity, the linear network is capable of capturing the cyclic response with sufficient accuracy. For both models, a multiaxial generalization and a calibration procedure is presented in order to incorporate the material model in the commercial finite element software Abaqus. With the implementation of the material model and the developed failure criterion, a micromechanical model of a fiber reinforced polymer is set up. With the developed fatigue modeling framework, the damage initiation and evolution are evaluated using data available in the literature. The damage behavior is in good qualitative agreement with the reported mechanisms proving the general suitability of the failure criterion.
elib-URL des Eintrags: | https://elib.dlr.de/101797/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||
Titel: | A physically based micromechanical approach to model damage initiation and evolution of fiber reinforced polymers under fatigue loading conditions | ||||||||
Autoren: |
| ||||||||
Datum: | 15 Februar 2016 | ||||||||
Erschienen in: | Composites Part B Engineering | ||||||||
Referierte Publikation: | Ja | ||||||||
Open Access: | Nein | ||||||||
Gold Open Access: | Nein | ||||||||
In SCOPUS: | Ja | ||||||||
In ISI Web of Science: | Ja | ||||||||
Band: | 87 | ||||||||
DOI: | 10.1016/j.compositesb.2015.10.012 | ||||||||
Seitenbereich: | Seiten 176-195 | ||||||||
Verlag: | Elsevier | ||||||||
ISSN: | 1359-8368 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | Polymer-matrix composites (PMCs) Fatigue Micro-mechanics | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Luftfahrt | ||||||||
HGF - Programmthema: | Flugzeuge | ||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||
DLR - Forschungsgebiet: | L AR - Aircraft Research | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Simulation und Validierung (alt) | ||||||||
Standort: | Braunschweig | ||||||||
Institute & Einrichtungen: | Institut für Faserverbundleichtbau und Adaptronik > Strukturmechanik | ||||||||
Hinterlegt von: | Krause, Dr. Daniel | ||||||||
Hinterlegt am: | 14 Jan 2016 10:25 | ||||||||
Letzte Änderung: | 31 Okt 2023 07:56 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags