elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Person Activity Recognition for sitting postures using RGB-D data

Wolfram, Michael Robert (2015) Person Activity Recognition for sitting postures using RGB-D data. DLR-Interner Bericht. 572-2015/32. Masterarbeit. Technische Universität München.

[img] PDF - Nur DLR-intern zugänglich
12MB

Kurzfassung

The estimation and analysis of the activity of a person has become an important component in many robotic applications such as Human-Robot Collaboration and assisted living systems. However, many existing approaches lack generalizability due to (a) their sensory set-up or (b) the use of a set of features which might be difficult to extract in a variety of application scenarios. This thesis focuses on the head of a person and its purpose is to create a framework that extracts features from the head that can be used for activity recognition. Key requirements for the framework are (1) its generic usability independent of the particular application/scene, (2) real-time capability, (3) a non-intrusive set-up using a low-priced RGB-D camera and (4) robustness to lighting conditions, partial occlusions and facial expressions. To meet these requirements an extension of the existing method for head pose estimation of [1] was developed. The extending component estimates the 2D elliptical region of interest around the human head in a depth image. The proposed combined method is a frame-by-frame approach and runs in real-time without the need of GPU computations. The method has been trained, tuned and validated in an indoor office environment using existing benchmarking databases as well as a new recorded database, later referred to as DLR FC-PEAR. Additionally, we recorded another database, DLR CAR, in a car environment which exhibits realistic and simulated driving situations. Both databases were recorded with a Kinect v2. These databases were used in the experiments to evaluate the performance of the head features for estimating the visual focus of attention of the subjects. The results showed the applicability of the method in these different use cases as well as its generalizability from office to car. During the experiments it also became apparent that various characteristics of the human (head) have to be reflected in the training stage to guarantee this generalizability. [1] G. Fanelli, M. Dantone, J. Gall, A. Fossati, and L. Van Gool. Random forests for real time 3d face analysis. Int. J. Comput. Vision, 101(3):437–458, February 2013.

elib-URL des Eintrags:https://elib.dlr.de/101473/
Dokumentart:Berichtsreihe (DLR-Interner Bericht, Masterarbeit)
Titel:Person Activity Recognition for sitting postures using RGB-D data
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Wolfram, Michael Robertmichael.wolfram (at) tum.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:15 Dezember 2015
Referierte Publikation:Nein
Open Access:Nein
Status:veröffentlicht
Stichwörter:head pose estimation, activity recognition, kinect, visual focus of attention
Institution:Technische Universität München
Abteilung:Fakultät für Informatik
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben Multisensorielle Weltmodellierung (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition
Hinterlegt von: Wolfram, Michael
Hinterlegt am:04 Jan 2016 11:27
Letzte Änderung:04 Jan 2016 11:27

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.