Vaduva, Corina und Georgescu, Florin-Andrei und Datcu, Mihai (2015) Dictionary-Based Compact Data Representation for Very High Resolution Earth Observation Image Classification. In: Advanced Concepts for Intelligent Vision Systems Lecture Notes in Computer Vision, 9386. Springer Link. Seiten 816-825. doi: 10.1007/978-3-319-25903-1_70. ISBN 978-3-319-25902-4.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: http://link.springer.com/chapter/10.1007/978-3-319-25903-1_70
Kurzfassung
In the context of fast growing data archives, with continuous changes in volume and diversity, information mining has proven to be a difficult, yet highly recommended task. The first and perhaps the most important part of the process is data representation for efficient and reliable image classification. This paper is presenting a new approach for describing the content of Earth Observation Very High Resolution images, by comparison with traditional representations based on specific features. The benefit of data compression is exploited in order to express the scene content in terms of dictionaries. The image is represented as a distribution of recurrent patterns, removing redundant information, but keeping all the explicit features, like spectral, texture and context. Further, a data domain analysis is performed using Support Vector Machine aiming to compare the influence of data representation to semantic scene annotation. WorldView2 data and a reference map are used for algorithm evaluation.
elib-URL des Eintrags: | https://elib.dlr.de/100188/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Beitrag in einem Lehr- oder Fachbuch | ||||||||||||||||
Zusätzliche Informationen: | Original presentation at: Advanced Concepts for Intelligent Vision Systems (ACIVS), Catania, Italy, 26-30 Oct., 2015 | ||||||||||||||||
Titel: | Dictionary-Based Compact Data Representation for Very High Resolution Earth Observation Image Classification | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 6 November 2015 | ||||||||||||||||
Erschienen in: | Advanced Concepts for Intelligent Vision Systems | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Band: | 9386 | ||||||||||||||||
DOI: | 10.1007/978-3-319-25903-1_70 | ||||||||||||||||
Seitenbereich: | Seiten 816-825 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Verlag: | Springer Link | ||||||||||||||||
Name der Reihe: | Lecture Notes in Computer Vision | ||||||||||||||||
ISBN: | 978-3-319-25902-4 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Information mining, feature extraction, dictionary, data representation, semantic classification | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||
Hinterlegt von: | Schwarz, Gottfried | ||||||||||||||||
Hinterlegt am: | 01 Dez 2015 08:35 | ||||||||||||||||
Letzte Änderung: | 10 Mai 2016 23:36 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags