Wang, Yuanyuan und Zhu, Xiao Xiang (2015) The robust InSAR optimization framework with application to monitoring cities on volcanoes. JURSE 2015, 30 March - 1 April 2015, Lausanne, Switzerland. (eingereichter Beitrag)
Es ist eine neuere Version dieses Eintrags verfügbar. |
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
This paper introduces the Robust InSAR Optimization (RIO) framework to the multi-pass InSAR techniques, such as PSI, SqueeSAR and TomoSAR whose current optimal estimators were derived based on the assumption of Gaussian distributed stationary data, with seldom attention towards their robustness. The RIO framework effectively tackles two common problems in the multi-pass InSAR techniques: 1. treatment of images with bad quality, especially those with large uncompensated atmospheric phase, and 2. the covariance matrix estimation of non-stationary distributed scatterer (DS). The former problem is dealt with using a robust M-estimator which effectively down-weight the images that heavily violate the model, and the latter is addresses with a new method: the Rank M-Estimator (RME) by which the covariance is estimated using the rank of the DS. RME requires no flattening/estimation of the interferometric phase, thanks to the property of mean invariance of rank. The robustness of RME is achieved by using an M-estimator, i.e. amplitude-based weighing function in covariance estimation. The RIO framework can be easily extended to most of the multi-pass InSAR techniques.
elib-URL des Eintrags: | https://elib.dlr.de/93038/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | The robust InSAR optimization framework with application to monitoring cities on volcanoes | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 2015 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Nein | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
Status: | eingereichter Beitrag | ||||||||||||
Stichwörter: | robust estimation, M-estimator, rank covariance matrix, D-InSAR, InSAR | ||||||||||||
Veranstaltungstitel: | JURSE 2015 | ||||||||||||
Veranstaltungsort: | Lausanne, Switzerland | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsdatum: | 30 March - 1 April 2015 | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||
Hinterlegt von: | Wang, Yuanyuan | ||||||||||||
Hinterlegt am: | 04 Dez 2014 16:39 | ||||||||||||
Letzte Änderung: | 30 Jan 2015 10:30 |
Verfügbare Versionen dieses Eintrags
- The robust InSAR optimization framework with application to monitoring cities on volcanoes. (deposited 04 Dez 2014 16:39) [Gegenwärtig angezeigt]
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags