DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Kontakt | English
Schriftgröße: [-] Text [+]

Far and Poximity Maneuvres of a Constellation of Service Satellites and Autonomous Pose Estimation of Customer Satellite Using Machine Vision

Marconi Rocco, Evandro und Arantes, Gilberto und da Fonseca,, Ijar und Theil, Stephan (2008) Far and Poximity Maneuvres of a Constellation of Service Satellites and Autonomous Pose Estimation of Customer Satellite Using Machine Vision. In: Proceedings of the 59th International Astronautical Congress. 59th International Astronautical Congress, 2008-09-29 - 2008-10-03, Glasgow (UK).

[img] PDF - Nur angemeldete Benutzer - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader


Space robotics has a substantial interest in achieving on-orbit satellite servicing operations autonomously, e.g. rendezvous and docking/berthing (RVD) with customer and malfunctionng satellites. An on-orbiter service vehicle requires the ability to estimate the position and attitude in situations whenever the targets are uncooperative. Such situation comes up when the target is damaged. In this context, this work presents a robust autonomous pose system applied to RVD missions. Our approach is based on computer vision, using a single camera and some previous knowledge of the target, i.e. the customer spacecraft. A rendezvous analysis mission tool for autonomous service satellite has been developted and presented, for far maneuvers, e.g. distance above 1 kilometer from the target, and close maneuvers. The far operations consist of orbit transfer using the Lambert formulation. The close operations include the inspection phase (during which the pose estimation is computed) and the final approach phase. In the close operations our approach is based on the Hill equations, used to simulate and analyze the approaching and final trajectory between target and chase during the last phase of the rendezvous. A method for optimally estimating the relative orientation and position between camera system and target is presented in detail. The target is modeled as an assembly of points. The pose of the target is represented by dual quaternion in order to develop a simple quadratic error function in such way that the pose estimation task becomes a least square minimization problem. The problem of pose is solved and some methods of non-linear square optimization (Newton, Newton-Gauss, and Levenberg-Marquard) are compared and discussed in terms of accuracy and computational cost.

Dokumentart:Konferenzbeitrag (Paper)
Titel:Far and Poximity Maneuvres of a Constellation of Service Satellites and Autonomous Pose Estimation of Customer Satellite Using Machine Vision
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iD
Marconi Rocco, EvandroCenter for Applied Space Technology and Microgravity, University of Bremen, GermanyNICHT SPEZIFIZIERT
Arantes, GilbertoCenter of Applied Space Technology and Microgravity, University of BremenNICHT SPEZIFIZIERT
da Fonseca,, IjarInstituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP, BrazilNICHT SPEZIFIZIERT
Datum:September 2008
Erschienen in:Proceedings of the 59th International Astronautical Congress
Referierte Publikation:Nein
In Open Access:Nein
In ISI Web of Science:Nein
Stichwörter:proximity operations, rendezvous, docking, pose estimation
Veranstaltungstitel:59th International Astronautical Congress
Veranstaltungsort:Glasgow (UK)
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:2008-09-29 - 2008-10-03
HGF - Forschungsbereich:Verkehr und Weltraum (alt)
HGF - Programm:Weltraum (alt)
HGF - Programmthema:W - keine Zuordnung
DLR - Schwerpunkt:Weltraum
DLR - Forschungsgebiet:W - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):W - keine Zuordnung (alt)
Standort: Bremen
Institute & Einrichtungen:Institut für Raumfahrtsysteme > Regelungs- und Datensysteme
Hinterlegt von: Theil, Dr.-Ing. Stephan
Hinterlegt am:12 Jan 2009
Letzte Änderung:12 Dez 2013 20:35

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Hilfe & Kontakt
electronic library verwendet EPrints 3.3.12
Copyright © 2008-2017 Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.