elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Classification of urban structural types (UST) using multiple data sources and spatial priors

Poncet-Montanges, Arnaud (2014) Classification of urban structural types (UST) using multiple data sources and spatial priors. Masterarbeit, École Polytechnique Féderale de Lausanne.

[img] PDF
17MB

Kurzfassung

Remote sensing and geographic information science offer many possibilities in terms of availability of diverse data. Some products like land cover layers or digital elevation models can be extracted from imagery and enable the realization of 3D city models. Starting from these morphological and geographical sources, an approach is proposed to extract information about urban structure types (UST), i.e. types of urban habitat at the neighborhoodscale. We propose an effective processing chain to describe UST : from the different data sources, we extract spectral and spatial indices and use them as features in a machine learning process to classify these urban structural types using support vector machine classication (SVM). Moreover, Markov Random Fields (MRF) are used to take into account the spatial distribution of the classe and increase the spatial consistency. This study focuses on the city of Munich and uses as different data sources the land cover data, the 3D city model, spectral images from LandSat TM 8 and OpenStreetMap (OSM) vector data to characterize UST. The main hypothesis is that we can discriminate among urban structural types by using land cover information, spectral properties and 3D structure: in other words, that an industrial area will not have the same structure nor the same properties as a residential or an agricultural area. The proposed processing chain enables to predict with a precision of 70% the 11 UST. This opens possibilities to describe the urban footprint of the city, to detect the key areas for urban planification and to better understand the city dynamics.

elib-URL des Eintrags:https://elib.dlr.de/99910/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Classification of urban structural types (UST) using multiple data sources and spatial priors
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Poncet-Montanges, ArnaudNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:23 Juni 2014
Referierte Publikation:Nein
Open Access:Ja
Seitenanzahl:54
Status:veröffentlicht
Stichwörter:support vector machine (SVM), classification, urban structural types (UST), Markov random fields (MRF)
Institution:École Polytechnique Féderale de Lausanne
Abteilung:Laboratory of Geographic Information Systems (LASIG)
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben Zivile Kriseninformation und Georisiken (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Standfuß, Ines
Hinterlegt am:01 Dez 2015 13:10
Letzte Änderung:31 Jul 2019 19:56

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.