elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Experimental investigation of the effect on boundary-layer transition of forward-facing steps, pressure gradient, and a non-adiabatic surface

Costantini, Marco (2015) Experimental investigation of the effect on boundary-layer transition of forward-facing steps, pressure gradient, and a non-adiabatic surface. Seminar des Instituts für Strömungsmechanik und Aerodynamik, Universität der Bundeswehr München, 2015-11-12, München, Deutschland.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Experiments were conducted in the Cryogenic Ludwieg-Tube Göttingen to study the influence of surface imperfections, streamwise pressure gradient, Reynolds number, Mach number, and a non-adiabatic surface on boundary-layer transition. The temperature-sensitive paint technique has been used to detect transition. The influence on boundary-layer transition of surface thermal gradients was examined using a two-dimensional model with a natural laminar flow (NLF) airfoil as cross-section. Various combinations of flow conditions and angles of attack were employed to investigate different stability situations at chord Reynolds numbers up to 13 Mio. The unfavorable impact of surface temperatures larger than the adiabatic-wall temperature was identified to be dependent on the considered boundary-layer-stability situation. For certain stability situations, it was shown that a non-adiabatic model surface can strongly influence the boundary-layer transition location. When transition is induced by a positive (adverse) pressure gradient, however, the sensitivity to the wall-temperature ratio is reduced. Forward-facing steps of different height were installed on two spanwise-invariant wind tunnel models and their effect on transition was examined at high chord Reynolds numbers, various streamwise pressure gradients, and Mach numbers from 0.35 to 0.77. Transition was found to gradually move towards the step location with increasing step Reynolds numbers and relative step height. Larger flow acceleration had a favorable influence on the transition Reynolds number even in the presence of forward-facing steps, but its effect was less pronounced as step Reynolds number and relative step height were increased. The plots of the relative change in transition location as a function of step Reynolds number and relative step height gave good correlation of the results obtained with both wind tunnel models.

elib-URL des Eintrags:https://elib.dlr.de/99491/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Experimental investigation of the effect on boundary-layer transition of forward-facing steps, pressure gradient, and a non-adiabatic surface
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Costantini, MarcoMarco.Costantini (at) dlr.dehttps://orcid.org/0000-0003-0642-0199134173729
Datum:2015
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Boundary-layer transition; forward-facing steps; non-adiabatic surface; Temperature-Sensitive Paint
Veranstaltungstitel:Seminar des Instituts für Strömungsmechanik und Aerodynamik, Universität der Bundeswehr München
Veranstaltungsort:München, Deutschland
Veranstaltungsart:Andere
Veranstaltungsdatum:12 November 2015
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Flugzeuge
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AR - Aircraft Research
DLR - Teilgebiet (Projekt, Vorhaben):L - Simulation und Validierung (alt)
Standort: Göttingen
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > Experimentelle Verfahren
Hinterlegt von: Micknaus, Ilka
Hinterlegt am:17 Nov 2015 14:54
Letzte Änderung:24 Apr 2024 20:04

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.