Beyer, Florian und Jarmer, Thomas und Siegmann, Bastian und Fischer, Peter (2015) Improved crop classification using multitemporal RapidEye data. In: 8th International Workshop on the Analysis of Multitemporal Remote Sensing Images (Multi-Temp), 2015, Seiten 1-4. IEEE Xplore. Analysis of Multitemporal Remote Sensing Images (Multi-Temp), 2015 8th International Workshop on the, 2015-07-22 - 2015-07-24, Annecy, Frankreich. doi: 10.1109/Multi-Temp.2015.7245780. ISBN 978-1-4673-7119-3.
PDF
- Nur DLR-intern zugänglich
1MB |
Offizielle URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7245780&punumber%3D7235770%26filter%3DAND%28p_IS_Number%3A7245742%29%26pageNumber%3D2
Kurzfassung
Land Use/Land Cover (LU/LC) of agricultural areas derived from remotely sensed data still remains very challenging. With regard to the rising availability and the improving spatial resolution of satellite data, multitemporal analyses become increasingly important for remote sensing investigations. Even crops with similar spectral behaviour can be separated by adding spectral information of different phenological stages. Hence, the potential of multi-date RapidEye data for classifying numerous agricultural classes was investigated in this study. In an agricultural area in Northern Israel two complete crop cycles 2013 and 2014 with two cultivation periods each were investigated. In order to avoid a high number of classification runs, a pre-procedure was tested to get the multitemporal data set which provides best spectral separability. Therefore, Jeffries-Matusita (JM) measure was used in order to obtain the best multitemporal setting of all available images within one cultivation period. Eight classifiers were applied to compare the potential of separating crops. The three algorithms Maximum Likelihood (ML), Random Forest (RF) and Support Vector Machine (SVM) outperformed by far the other classifiers with Overall Accuracies higher than 90 %. The processing time of ML and RF, however, was significantly shorter compared to SVM, in fact by a factor of five to seven.
elib-URL des Eintrags: | https://elib.dlr.de/98767/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | Improved crop classification using multitemporal RapidEye data | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Juli 2015 | ||||||||||||||||||||
Erschienen in: | 8th International Workshop on the Analysis of Multitemporal Remote Sensing Images (Multi-Temp), 2015 | ||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/Multi-Temp.2015.7245780 | ||||||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||||||
Verlag: | IEEE Xplore | ||||||||||||||||||||
ISBN: | 978-1-4673-7119-3 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | crops;maximum likelihood estimation;remote sensing;support vector machines;vegetation mapping;JM;Jeffries-Matusita measure;LU-LC;ML;Northern Israel;RF;SVM;agricultural areas;agricultural classes;crop classification;crop cycles;cultivation period;cultivation periods;land use-land cover;maximum likelihood;multidate RapidEye data;multitemporal RapidEye data;multitemporal analyses;random forest;remote sensing investigations;remotely sensed data;satellite data;spatial resolution;support vector machine;Accuracy;Agriculture;Radio frequency;Remote sensing;Satellites;Soil;Support vector machines | ||||||||||||||||||||
Veranstaltungstitel: | Analysis of Multitemporal Remote Sensing Images (Multi-Temp), 2015 8th International Workshop on the | ||||||||||||||||||||
Veranstaltungsort: | Annecy, Frankreich | ||||||||||||||||||||
Veranstaltungsart: | Workshop | ||||||||||||||||||||
Veranstaltungsbeginn: | 22 Juli 2015 | ||||||||||||||||||||
Veranstaltungsende: | 24 Juli 2015 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||
Hinterlegt von: | Fischer, Peter | ||||||||||||||||||||
Hinterlegt am: | 22 Okt 2015 15:52 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:04 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags