elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Indirect combustion noise: Experimental investigation of the vortex sound generation in nozzle flows

Kings, Nancy (2015) Indirect combustion noise: Experimental investigation of the vortex sound generation in nozzle flows. DLR-Forschungsbericht. DLR-FB 2015-21. Dissertation. Technische Universität Berlin. 219 S.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

In recent years combustion noise of aero-engines has gained in importance. The latter consists of direct noise, related to the unsteady combustion process itself, and indirect noise. As known, entropy noise, contributing to indirect noise, is produced when entropy fluctuations originating from the combustor are accelerated through the turbine. According to the characterisation of a flow by pressure, entropy and vorticity perturbations, accelerated vorticity fluctuations are likewise expected to generate an indirect noise component. Within this work, the vortex sound generation mechanism was studied in a model experiment simplifying the combustor-turbine combination of aero-engines. Vorticity fluctuations were generated artificially by air-injection into swirl free as well as swirling tube flows and the proof of the emission of vortex sound during their acceleration in a convergent-divergent nozzle could be provided. The spatial and temporal change of the velocity field was determined with Hot-Wire Anemometry measurements upstream of the nozzle and the produced acoustic waves were detected downstream of it. For various flow fields imposed with perturbations the identification and separation of direct and vortex sound was achieved. Beside the dependency on the vorticity fluctuation amplitude, increasing the air-injection into the mean flow augments the vortex sound in case of a choked nozzle, the swirl intensity of the mean flow was figured out as a further parameter for this indirect sound generation process. In addition to the sound generation caused by the acceleration of a predominant, artificially produced vortex structure, the broadband noise emission of an accelerated tube flow was studied. With a linear theory approach, the alterations of the fluctuating velocity components through the acceleration were estimated. The coupled influence of the flow field upstream of the nozzle and of its occurring changes due to the imposed mean flow gradient revealed a significant effect on the vortex sound and therewith on the indirect noise generation mechanism.

elib-URL des Eintrags:https://elib.dlr.de/98236/
Dokumentart:Berichtsreihe (DLR-Forschungsbericht, Dissertation)
Zusätzliche Informationen:Zugl.: Berlin, Technische Universität, Diss., 2015(urn:nbn:de:kobv:83-opus4-67598)
Titel:Indirect combustion noise: Experimental investigation of the vortex sound generation in nozzle flows
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kings, NancyDLR, AT-TRANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2015
Referierte Publikation:Ja
Open Access:Nein
Seitenanzahl:219
ISSN:1434-8454
Status:veröffentlicht
Stichwörter:aeroacoustics; idirect combustion noise; nozzle flow; vortex sound; vorticity wave generator Liner
Institution:Technische Universität Berlin
Abteilung:Fakultät V - Verkehrs- und Maschinensysteme
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Antriebssysteme
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L ER - Engine Research
DLR - Teilgebiet (Projekt, Vorhaben):L - Brennkammertechnologien (alt), E - Gasturbine (alt)
Standort: Berlin-Charlottenburg
Institute & Einrichtungen:Institut für Antriebstechnik > Triebwerksakustik
Hinterlegt von: Bake, Dr.-Ing. Friedrich
Hinterlegt am:12 Okt 2015 10:35
Letzte Änderung:12 Okt 2015 10:35

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.