Alonso, Kevin und Datcu, Mihai (2015) Accelerated Probabilistic Learning Concept for Mining Heterogeneous Earth Observation Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8 (7), Seiten 3356-3371. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2015.2435491. ISSN 1939-1404.
PDF
3MB |
Offizielle URL: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7122869
Kurzfassung
We present an accelerated probabilistic learning concept and its prototype implementation for mining heterogeneous Earth observation images, e.g., multispectral images, synthetic aperture radar (SAR) images, image time series, or geographical information systems (GIS) maps. The system prototype combines, at pixel level, the unsupervised clustering results of different features, extracted from heterogeneous satellite images and geographical information resources, with user-defined semantic annotations in order to calculate the posterior probabilities that allow the final probabilistic searches. The system is able to learn different semantic labels based on a newly developed Bayesian networks algorithm and allows different probabilistic retrieval methods of all semantically related images with only a few user interactions. The new algorithm reduces the computational cost, overperforming existing conventional systems, under certain conditions, by several orders of magnitude. The achieved speed-up allows the introduction of new feature models improving the learning capabilities of knowledge-driven image information mining systems and opening them to Big Data environments
elib-URL des Eintrags: | https://elib.dlr.de/98186/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Accelerated Probabilistic Learning Concept for Mining Heterogeneous Earth Observation Images | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 12 Juni 2015 | ||||||||||||
Erschienen in: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 8 | ||||||||||||
DOI: | 10.1109/JSTARS.2015.2435491 | ||||||||||||
Seitenbereich: | Seiten 3356-3371 | ||||||||||||
Herausgeber: |
| ||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||
ISSN: | 1939-1404 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Active learning (AL), Bayesian networks, Big Data bag-of-words (BoW), data fusion, geographical information systems (GIS), image mining | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||
Hinterlegt von: | UNGÜLTIGER BENUTZER | ||||||||||||
Hinterlegt am: | 01 Okt 2015 10:41 | ||||||||||||
Letzte Änderung: | 27 Nov 2023 12:24 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags