elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Spatiotemporal inferences for use in building detection using series of very-high-resolution space-borne stereo images

Qin, Rongjun und Tian, Jiaojiao und Reinartz, Peter (2016) Spatiotemporal inferences for use in building detection using series of very-high-resolution space-borne stereo images. International Journal of Remote Sensing, 37 (15), Seiten 3455-3476. Taylor & Francis. doi: 10.1080/01431161.2015.1066527. ISSN 0143-1161.

[img] PDF
2MB

Offizielle URL: http://www.tandfonline.com/doi/full/10.1080/01431161.2015.1066527

Kurzfassung

Automatic building detection from very-high-resolution (VHR) satellite images is a difficult task. The detection accuracy is usually limited by spectral ambiguities and the uncertainties of the available height information. Feature extraction and training sampling collection for supervised methods are other sources of uncertainty. Most widely used VHR sensors have shorter revisit cycles (IKONOS/GeoEye-1/2, 3 days; WorldView 1/2, 1.1 days) due to large off-nadir viewing angles and hence are able to perform consistent acquisition of mono or stereo images. In this article, we investigate the possibility of using high-temporal stereo VHR images to enhance remote-sensing image interpretation under the context of building detection. Digital surface models, which contain the height information, are generated for each date using semi-global matching. Pre-classification is performed combining the height and spectral information to obtain an initial building probability map. With a reference land cover map available for one date, the training samples of the other dates are automatically derived using a rule-based validating procedure. A spatiotemporal inference filter is developed considering the spectral, spatial, and temporal aspects to enhance the building probability maps. This aims at homogenizing the building probability values of spectrally similar pixels in the spatial domain and geometrically similar pixels in the temporal domain, while being robust to the silhouette of the images and geometric discrepancies of the multitemporal data. The effectiveness and robustness of the proposed method are evaluated by performing three experiments on six stereo pairs of the same region over a time period of five years (2006–2011). The area under curve (AUC) of the receiver operating characteristic and kappa statistic (κ) are employed to assess the results. These experiments show that spatiotemporal inference filtering largely improves the accuracy of the building probability map (average AUC = 0.95) while facilitating building extraction in snow-covered images. The resulting building probability maps can be further used for other applications (e.g. building footprint updating).

elib-URL des Eintrags:https://elib.dlr.de/97983/
Dokumentart:Zeitschriftenbeitrag
Zusätzliche Informationen:ISSN: 0143-1161 (Print), 1366-5901 (Online)
Titel:Spatiotemporal inferences for use in building detection using series of very-high-resolution space-borne stereo images
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Qin, RongjunSingapore ETH Center, Future Cities Laboratory, SingaporeNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Tian, Jiaojiaojiaojiao.tian (at) dlr.dehttps://orcid.org/0000-0002-8407-5098NICHT SPEZIFIZIERT
Reinartz, Peterpeter.reinartz (at) dlr.dehttps://orcid.org/0000-0002-8122-1475NICHT SPEZIFIZIERT
Datum:2016
Erschienen in:International Journal of Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:37
DOI:10.1080/01431161.2015.1066527
Seitenbereich:Seiten 3455-3476
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
Warner, Timothy A.West Virginia University, USANICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Verlag:Taylor & Francis
ISSN:0143-1161
Status:veröffentlicht
Stichwörter:spatiotemporal, building detection
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrsmanagement (alt)
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VM - Verkehrsmanagement
DLR - Teilgebiet (Projekt, Vorhaben):V - Vabene++ (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Tian, Dr Jiaojiao
Hinterlegt am:08 Sep 2015 13:06
Letzte Änderung:28 Mär 2023 23:44

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.