elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Building types' classification using shape-based features and linear discriminant functions

Wurm, Michael und Schmitt, Andreas und Taubenböck, Hannes (2016) Building types' classification using shape-based features and linear discriminant functions. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9 (5), Seiten 1901-1912. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2015.2465131. ISSN 1939-1404.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7210144

Kurzfassung

In this paper, the applicability and performance of linear discriminant analysis (LDA) for building types classification are investigated. Building models at a level of detail 1 (LoD1) are derived from real estate cadastral building footprints and digital surface models from stereoscopic airborne images. In several experiments for two cities in Germany (Berlin and Munich) we first evaluate the discriminatory power of 26 different shape-based features which describe the physiognomy of individual buildings in terms of 1D (e.g. length), 2D (e.g. area) and 3D (e.g. volume) features. While 1D-features show low contributions to the discrimination of the five building types, we observe high contributions of the 3D shape index and 2D-measures of compactness. In a second group of experiments, the size of training samples for the classification process is investigated with the outcome that a size of 10 % of the total number of labeled features is practicable in terms of size and accuracy. In a third battery of experiments, the selected features and training sample size is used for classification of the building types resulting in kappa values of 0.94 for both cities. In the final experiments, the geographical transfer between the two cities is investigated reaching kappa values of 0.93 and 0.91, respectively. The tests show that a simple linear classifier like LDA can handle building type classification without much user interaction compared to more complex classification methods but is limited when similar building types (e.g. perimeter block development and block development) are to be discriminated

elib-URL des Eintrags:https://elib.dlr.de/97452/
Dokumentart:Zeitschriftenbeitrag
Titel:Building types' classification using shape-based features and linear discriminant functions
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Wurm, Michaelmichael.wurm (at) dlr.dehttps://orcid.org/0000-0001-5967-1894NICHT SPEZIFIZIERT
Schmitt, AndreasAndreas.Schmitt (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Taubenböck, Hanneshannes.taubenboeck (at) dlr.dehttps://orcid.org/0000-0003-4360-9126NICHT SPEZIFIZIERT
Datum:Mai 2016
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:9
DOI:10.1109/JSTARS.2015.2465131
Seitenbereich:Seiten 1901-1912
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:building model, urban areas, discriminant analysis, building types
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben Zivile Kriseninformation und Georisiken (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Wurm, Michael
Hinterlegt am:14 Sep 2015 10:14
Letzte Änderung:28 Nov 2023 09:35

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.