elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Does a post-stratification of ground units improve the forest biomass estimation by remote sensing data?

Latifi, Hooman und Fassnacht, Fabian und Hartig, Florian und Berger, Christian und Hernandez, J und Koch, Barbara (2015) Does a post-stratification of ground units improve the forest biomass estimation by remote sensing data? The 36th International Symposium on Remote Sensing of Environment (ISRSE), 2015-05-11 - 2015-05-15, Berlin.

[img] PDF - Nur DLR-intern zugänglich
4MB

Kurzfassung

Remote sensing-assisted estimates of aboveground forest biomass are essential for modeling carbon budget on various scales. For these estimates, multiple factors such as sensor type, statistical prediction method, sampling design for the reference inventory data or the splitting of prediction models into species- strata-specific submodels affect the quality and robustness of the resulting predictions. Yet, few studies have attempted a systematic analysis of how these factors (and their interactions) contribute to the yielded predictive quality. We addressed this topic by conducting two tests based on performance of small scale, remote sensing-assisted biomass models under post-stratification of sampling units. We used arbitrarily-selected predictors from airborne LiDAR and hyperspectral data obtained in a managed mixed forest site in southwestern Germany. They were evaluated in terms of their predictive power by means of 5 commonly in-use spatial models. The bootstrap cross validated RMSE and r2 diagnostics were additionally analyzed in a factorial design by an Analysis of Variance (ANOVA) to rank the factor effects. Selected models were used for wall-to-wall mapping of biomass estimates and their associated uncertainty. The results revealed marginal advantages for the strata-specific prediction models over the unstratified ones, which were more accentuated on area-based prediction maps. Yet, these findings are concluded to be partially site-specific. Input data type and statistical prediction method are concluded to remain the two most crucial factors for the quality of remote sensing-assisted biomass models.

elib-URL des Eintrags:https://elib.dlr.de/96830/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Does a post-stratification of ground units improve the forest biomass estimation by remote sensing data?
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Latifi, Hoomanhooman.latifi (at) uni-wuerzburg.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Fassnacht, Fabianfabian.fassnacht (at) kit.eduNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hartig, FlorianFlorian.Hartig (at) biom.uni-freiburg.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Berger, Christianchristian.berger (at) uni-jena.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hernandez, Jjhernand (at) uchile.clNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Koch, Barbarabarbara.koch (at) felis.uni-freiburg.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2015
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:LiDAR and hyperspectral remote sensing, aboveground biomass, statistical prediction, post-stratification, model performance, factorial design
Veranstaltungstitel:The 36th International Symposium on Remote Sensing of Environment (ISRSE)
Veranstaltungsort:Berlin
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:11 Mai 2015
Veranstaltungsende:15 Mai 2015
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum
Hinterlegt von: Wöhrl, Monika
Hinterlegt am:18 Aug 2015 10:27
Letzte Änderung:24 Apr 2024 20:02

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.