elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Global Sensitivity Analysis applied to Model Inversion Problems: A Contribution to Rail Condition Monitoring

Schenkendorf, René und Groos, Jörn C. (2015) Global Sensitivity Analysis applied to Model Inversion Problems: A Contribution to Rail Condition Monitoring. International Journal of Prognostics and Health Management Verlag: phm society, 6 (Sp4). The Prognostics and Health Management Society. doi: 10.36001/ijphm.2015.v6i4.2322. ISSN 2153-2648.

[img] PDF
1MB

Offizielle URL: https://www.phmsociety.org/references/ijphm-archives/2015/Sp4

Kurzfassung

Rising demands on railroad infrastructure operator by means of profitability and punctuality call for advanced concepts of Prognostics and Health Management. Condition based preventive maintenance aims at strengthening the rail mode of transport through an optimized scheduling of maintenance actions based on the actual and prognosticated infrastructure condition, respectively. When applying model-based algorithms within the framework of Prognostics and Health Management unknown model parameters have to be identified first. Which of these parameters should be known as precisely as possible can be figured out systematically by a sensitivity analysis. A comprehensive global sensitivity analysis, however, might be prohibitive by means of computation load when standard algorithms are implemented. In this study, it is shown how global parameter sensitivities can be calculated efficiently by combining Polynomial Chaos Expansion and Point Estimate Method principles. The proposed framework is demonstrated by a model inversion problem which aims to recalculate the track quality by measurements of the vehicle acceleration, i.e. analyzing the dynamic railway track-vehicle interaction.

elib-URL des Eintrags:https://elib.dlr.de/96495/
Dokumentart:Zeitschriftenbeitrag
Titel:Global Sensitivity Analysis applied to Model Inversion Problems: A Contribution to Rail Condition Monitoring
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schenkendorf, Renérene.schenkendorf (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Groos, Jörn C.Joern.Groos (at) dlr.dehttps://orcid.org/0000-0003-3871-0756136889671
Datum:Mai 2015
Erschienen in:International Journal of Prognostics and Health Management Verlag: phm society
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:6
DOI:10.36001/ijphm.2015.v6i4.2322
Verlag:The Prognostics and Health Management Society
Name der Reihe:Special Issue on Uncertainty
ISSN:2153-2648
Status:veröffentlicht
Stichwörter:Track Monitoring, Prognostics and Health Management, Railway Systems, Condition Based Monitoring, Sensitivity Analysis, Inverse Simulation, Polynomial Chaos Expansion
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Verkehrsmanagement (alt)
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V VM - Verkehrsmanagement
DLR - Teilgebiet (Projekt, Vorhaben):V - TrackScan (alt)
Standort: Braunschweig
Institute & Einrichtungen:Institut für Verkehrssystemtechnik > Bahnsysteme
Hinterlegt von: Schenkendorf, Rene
Hinterlegt am:08 Jun 2015 11:01
Letzte Änderung:14 Jun 2023 15:58

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.